

National Bahá'í Centre of Canada and Canadian National Temple, City of Markham

Functional Servicing and Stormwater Management Report

January 2024

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335

Project Number: 2004

Table of Contents

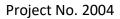
Page

1.0	Introduction	1
1.1	Purpose of the Report	2
1.2	2 Study Area	3
1.3	Background Servicing Information	
2.0	Storm Servicing	
2.1	Existing Storm Sewer System	5
2.2	2 Proposed Storm Sewer System	5
3.0		
3.1	Existing Drainage	
3.2	2 Stormwater Runoff Control Criteria	6
3.3	Allowable Release Rate	6
3.4	Stormwater Best Management Practices Selection	7
	3.4.1 At-Source Controls Evaluation	
	3.4.2 Conveyance Controls Evaluation	10
	3.4.3 Proposed End-of-Pipe Controls	11
	3.4.4 Selection of Best Management Practices (BMPs)	12
3.5	5 Proposed Storm Drainage	13
3.6		
3.7	7 Quality Control	15
3.8	3 Erosion & Volume Control	15
3.9	9 Water Balance	16
4.0	Sanitary Servicing	17
4.1	Existing Sanitary Servicing	
	2 Proposed Sanitary Servicing	
	Water Servicing	
5.1	L Existing Water Servicing	19
5.2	2 Proposed Water Servicing	19
	Grading	21
6.1	L Existing Grading Conditions	21
6.2	2 Proposed Grading Concept	21
7.0	Leslie Street Modifications	22
7.1	L Existing Conditions	22
	2 Proposed Conditions	
8.0	Erosion and Sediment Control During Construction	23
9.0	Summary	24

•••

≻

List of Tables


- Table 3-1: Stormwater Runoff Control Criteria
- Table 3-2: Allowable Release Rate Summary
- Table 3-3: Evaluation of Stormwater Best Management Practices (BMPs)
- Table 3-4: Summary of the Recommended Best Management Practices (BMPs)
- Table 3-5: Summary of 100 Year Release Rates and Storage to the Leslie Street Outlet
- Table 3-6: Proposed Release Rate Summary
- Table 7-1: Existing Conditions Leslie Flood Spill

List of Figures

- Figure 1.1 Site Location Plan
- Figure 2.1 Functional Storm Servicing Plan
- Figure 3.1 Existing Storm Drainage Figure 1
- Figure 3.2 Existing Storm Drainage Figure 2
- Figure 3.3 Existing Storm Drainage Figure 3
- Figure 3.4 Proposed Storm Drainage Figure 1
- Figure 3.5 Proposed Storm Drainage Figure 2
- Figure 4.1 Functional Sanitary Servicing Plan
- Figure 4.2 Preliminary Sanitary Drainage Plan
- Figure 5.1 Functional Watermain Servicing Plan
- Figure 6.1 Preliminary Grading Plan
- Figure 7.1 Floodplain Mapping Plan
- Figure 7.2 TRCA Floodplain Mapping Plan
- Figure 7.3 Leslie Street Preliminary Grading Plan

List of Appendices

- Appendix A Site Plan
- Appendix B Record Drawings and Background Information
- Appendix C Downstream Storm Sewer Capacity Analysis & Stormwater Management Calculations
- Appendix D Sanitary Flow Calculations
- Appendix E Water Distribution Analysis

Submission History

Submission	Date	In Support Of	Distributed To
1 st	October 2022	Official Plan	City of Markham,
		Amendment and	Toronto & Region
		Re-Zoning	Conservation
		Application	Authority
2 nd	January 2024	Official Plan	City of Markham,
		Amendment and	Toronto & Region
		Re-Zoning	Conservation
		Application	Authority

≻

1.0 Introduction

SCS Consulting Group Ltd. has been retained by Hariri Pontarini Architects to prepare a Functional Servicing and Stormwater Management Report for the restoration and parking lot improvement at 7015 Leslie Street, a proposed Temple and National Centre building located at 7200 and 7290 Leslie Street respectively in the City of Markham of the Regional Municipality of York.

The National Spiritual Assembly of the Bahá'ís of Canada and the Association for Bahá'í Studies ("NSA Bahá'ís") own three properties on Leslie Street, north of Steeles Avenue and south of John Street, in the City of Markham. These properties are municipally known as 7200, 7290 and 7015 Leslie Street ("Subject Lands") and the subject of applications for Official Plan and Zoning By-law Amendments with the City of Markham.

The NSA Bahá'ís is proposing to construct a new National Bahá'í Centre of Canada ("BNC") to replace the existing National Centre building at 7200 Leslie Street and have selected their property in Markham to raise up a national Bahá'í House of Worship ("Canadian National Temple" or "Temple"). The new BNC will provide for expanded administrative and institutional functions that include administrative offices, meeting rooms, multi-purpose educational and assembly facilities, and lodging rooms. The Temple will be designed to the highest standard, as reflected in the great Bahá'í Temples constructed around the world. The proposal will support the institute's growing functions and support the construction of the Temple in accordance with the Conceptual Master Plan. Detailed technical studies and design exercises have illustrated that the Subject Lands can accommodate the proposed design without impacts on the adjacent lands and natural heritage network.

7015 Leslie Street is currently used by the Bahá'í Community for the Don Valley Education Centre for their programming such as plenary sessions, small group studies, educational and service events, and other community outreach programs such as youth day camps, arts and craft activities, outdoor play and recreation. This property and existing buildings also provide space for other gatherings and meetings organized by the Bahá'í Community such as holy day celebrations, community and administrative meetings, conferences, and storage of educational books and materials. 7015 Leslie Street was added to the zoning application to ensure that these existing uses are properly enshrined in the zoning by-law.

The Subject Lands are designated "Greenway" and "Residential Low Rise" under the City of Markham Official Plan 2014 ("MOP"). Place of Worship are permitted in all land use designations in the MOP to the discretion of Council and in consideration of the criteria in policy 8.13.7.1 when in a Residential designation. The Proposed OPA will refine the extent of the "Greenway" designation to better reflect the extent of the key natural heritage features as delineated through an environmental impact study. The Proposed OPA also includes site-specific policy under Section 9.18 to clarify the permitted uses

related to the existing place of worship and the BNC as the place of worship administrative headquarters as well as details regarding the application of minimum vegetation protection zones, trails within the Greenway, and restoration commitments.

7200 and 7290 Leslie Street are currently zoned "Special Residential 3 Zone (SR3)" under Zoning By-law 1767, as amended. Places of Worship, specifically churches or religious institutions, are currently permitted uses. A Zoning By-law Amendment ("ZBA") is proposed to bring the zoning into conformity with the MOP (zone lands Greenway which have been identified for protection) and update the zone standards. The Proposed ZBA updates the "out-of-date" in-force By-laws and standards to be generally consistent with current standards in Zoning By-law 177-96 and the proposed Comprehensive Zoning By-law.

1.1 Purpose of the Report

The Functional Servicing and SWM Report has been prepared in support of the Re-Zoning Application and Official Plan Amendment for the proposed development. The Concept Plan is provided in **Appendix A**.

The purpose of this report is to demonstrate that the proposed development can be accommodated by existing external storm, sanitary and water infrastructure and to establish servicing, grading and stormwater management expectations for the future site plan application in accordance with the City of Markham, Toronto & Region Conservation Authority (TRCA), the Ontario Building Code, and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

1.2 Study Area

The proposed development is approximately 5.37 ha in size and consists of a restored and improved parking lot, new National Centre Building for the National Spiritual Assembly of the Bahá'ís of Canada, a National Temple for the Bahá'i Faith, several small ancillary structures, a private driveway shared with the adjacent golf club located on the Golf Course Lands, and parking lot, all located within the German Mills Creek subwatershed of the Don River Watershed in the City of Markham. Access to the proposed development is proposed from Leslie Street. As shown on **Figure 1.1**, the study area is bound by:

- Existing Park space and woodland to the north;
- Waterloo Court to the south;
- Existing Park space and woodland to the east; and
- BAYVIEW GOLF AND COUNTRY GERMAN MILLS SETTLERS PARK CLUB GOLF COURSE SITE GERMAN MILLS (7290 LESLIE STREET - NATIONAL SETTLERS PARK SPIRITUAL ASSEMBLY OF THE SITE BAHÁ'ÍS OF CANADA) BANIEW (7200 LESLIE STREET - NATIONAL SPIRITUAL ASSEMBLY OF THE BAHÁ'ÍS OF CANADA) - CUNB GOLF Weot AND COUNTRY BERCY WATERIOO (WYCLIFFE) PARK FAIRWAY HEIGHTS DRIVE ESLIE STREET (1111118/11111 - attittitt (7015 LESLIE STREET ASSOCIATION FOR THE BAHÁ'Í STUDIES) STEELES AVENUE EAST
- Existing Bayview Golf and Country Club to the west.

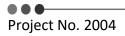
Figure 1.1: Site Location Plan

1.3 Background Servicing Information

The following design guidelines and standards have been referred to with regard to the site servicing, grading, and stormwater management for the proposed development (relevant excerpts are included in **Appendix B**):

 Stormwater Management Criteria by Toronto and Region Conservation Authority (August 2012);

- Low Impact Development Stormwater Management Planning and Design Guide by Sustainable Technologies Evaluation Program, (January 2024), [https://wiki.sustainabletechnologies.ca/wiki/Main_Page];
- Design Criteria by City of Markham Engineering Department (July 2019); and
- ← MECP Stormwater Management Planning and Design Manual (2003).


The site servicing and SWM strategies in this report are based on the following approved reports & drawings:

- York-Durham Sewage System (Leslie Street Forcemain) Contract Drawing Set, Gore & Storrie Ltd. Consulting Engineers (March 1995);
- York-Durham Sewage System (Leslie Street Forcemain-South) Contract Drawing Set, Gore & Storrie Ltd. Consulting Engineers (May 1979);
- York-Durham Sewage System (Leslie Street Forcemain-Central) Contract Drawing Set, Gore & Storrie Ltd. Consulting Engineers (November 1979);
- Waterloo Court Subdivision As Constructed Engineering Drawings Set, Fred Schaeffer & Associates Inc (August 1981);
- South-West Collector Sewer Drawing, Gore & Storrie Ltd. Consulting Engineers (December 1978);
- Don River Floodplain Mapping Updated (Phase I) and G. Ross Lord Dam's Operation Rule Optimization and Risks Study – Phase I Report, prepared by KGS Group Inc., dated April 2020; and
- Don River Floodplain Mapping Phase II Report, prepared by WSP Global Inc., dated August 2020.
- Technical Guide, River & Stream Systems: Floodplain Hazard Limit, Appendix 26, Section (1) Flooding as a Threat to Life, prepared by Ontario Ministry of Natural Resources, dated 2002

The site servicing and SWM strategies in this report are also based on the following reports:

- Scoped Environmental Impact Study for the Bahá'í National Centre and Temple, prepared by GEI Consultants Ltd. (October 2022);
- 7015-7200 Leslie Street Development Watermain Analysis, prepared by Municipal Engineering Solutions. (August 2022); and
- Hydrogeological Study for the Bahá'í National Centre Site, prepared by Terraprobe Inc. (December 2023).

Relevant excerpts from the above listed documents are provided in **Appendix B**.

2.0 Storm Servicing

2.1 Existing Storm Sewer System

As indicated in the record drawings (**Appendix B**), the sizes and locations of the existing storm sewers surrounding the existing site are:

 300 mm – 375 mm diameter storm sewers from Waterloo Court flowing east across Leslie Street and outletting to an existing headwall to German Mills Creek.

The existing site is currently draining via overland flow towards the woodland and German Mills Creek to the east. There are no existing storm sewers servicing the site.

2.2 Proposed Storm Sewer System

The private storm sewer system for the proposed development (**Figure 2.1**) will be designed to capture the 100 year return storm per the City of Markham Design Standards and released via control structure to restrict the flow to the capacity of the existing infrastructure (further discussed in Section 3.2 of this report). The storm sewer system will be designed in accordance with the City of Markham, Ontario Building Code and MECP guidelines, including the following:

- Pipes to be sized to accommodate runoff from a 100 year storm event;
- Minimum Pipe Size: 300 mm diameter;
- Maximum Flow Velocity: 3.7 m/s;
- Minimum Flow Velocity: 0.6 m/s; and
- Minimum Pipe Depth: 1.2 m to obvert (frost cover).

As requested by the City and TRCA, a connection is proposed to the existing stormwater infrastructure so an additional headwall is not required to German Mills Creek. As such, a downstream capacity analysis (Appendix C) was prepared to evaluate the residual capacity of the existing storm sewer on Waterloo Court. As shown by the analysis, the residual capacity by gravity within the existing sewer is 37.0 L/s. A hydraulic grade line (HGL) analysis was conducted to identify if any additional flow can be added to the existing infrastructure without creating adverse impact. This analysis concludes that the existing system at Ex. STM.MH.3 at the intersection of Leslie Street and Waterloo Court can accommodate a flow of 213.2 L/s without impacting the HGL between STM.MH.3 and STM.MH.2 on waterloo court where there are catchbasins and service connections to the existing infrastructure. For this reason, the storm sewer system is proposed to connect to the existing infrastructure at the intersection of Leslie Street and Waterloo Court to outlet to German Mills Creek via the existing headwall within the valley, as shown on Figure 2.1. The exact size and location of the proposed private storm sewer system for the proposed development will be determined in support of the Site Plan application.

3.0 Stormwater Management

3.1 Existing Drainage

The existing site is located within the German Mills Creek Subwatershed of the Don River Watershed. German Mills Creek flows southerly east of the existing site. The runoff from the existing site (5.37 ha) drains easterly via overland flow into German Mills Creek.

3.2 Stormwater Runoff Control Criteria

The following stormwater runoff control criteria have been established based on the City of Markham design criteria (July 2019), the Toronto & Region Conversation Authority SWM Criteria (August 2012), and the MECP Stormwater Management Planning and Design Manual (2003). The stormwater runoff criteria are summarized below in **Table 3-1**.

Criteria	Control Measure		
Quantity Control	The release rate to German Mills Creek will be the existing 2 – 100		
	peak flows per Don River Criteria. For flows directed to existing		
	infrastructure the release rate will be the lesser of existing peak or		
	the capacity of the existing infrastructure to prevent the		
	construction of an additional outlet headwall in the valley.		
Quality Control	Provide MECP Enhanced (Level 1) Protection for 80% TSS Removal.		
Erosion Control	Retention of the 5 mm rainfall runoff on-site.		
Water Budget	As the majority of the existing site does not lie within a Wellhead		
	Protection Area (WHPA), High Volume Recharge Area (HVRA), or		
	Ecologically Significant Groundwater Recharge Area (ESGRA), the		
	water budget criteria will be achieved via the retention of the		
	equivalent of 5 mm of rainfall over the development area. The		
	western portion of the site falls within a Highly Vulnerable Aquifer		
	(HVA) with a Vulnerability Score of 6.		

Table 3-1: Stormwater Runoff Control Criteria

3.3 Allowable Release Rate

The target release rates for the proposed development are the existing 2 – 100 year peak runoff rates for the portion of the existing site that are tributary to German Mills Creek (Catchments 101, 102 & 103, **Figures 3.2 & 3.3**). The allowable release rate for the proposed development that is tributary to the existing storm infrastructure on Waterloo Court (Catchment 104, **Figure 3.1**) was determined based on the hydraulic gradeline assessment performed on the existing infrastructure from Waterloo Court to the existing headwall (**Section 2.2**). The design sheets and hydraulic grade line analysis is

provided in **Appendix C**. The existing storm drainage areas are shown on **Figures 3.1**, **3.2**, and **3.3**.

The rational method was used to determine the target release rates from the site based on Intensity-Duration-Frequency (IDF) rainfall curves from the City of Markham Design Standards.

The allowable release rate calculation for the proposed redevelopment is summarized in **Table 3-2** below, further detail on the calculations is available in **Appendix C**.

Return Period Storm	Leslie Street Outlet Sewer (L/s)	German Mills Creek (L/s)	Total Release Rate to German Mills Creek (L/s)
2 Year	95.7	253.4	349.2
5 Year	132.8	351.6	484.4
10 Year	161.4	427.2	588.6
25 Year	192.5	560.7	753.2
50 Year	211.4	671.8	883.2
100 Year	213.2 [†]	789.1	1087.2

Table 3-2: Allowable Release Rate Summary

Note[†]: The allowable release rate reflects residual capacity available in this existing system without impacting the upstream infrastructure (213.2 L/s), which is less than existing.

3.4 Stormwater Best Management Practices Selection

In accordance with the Ministry of Environment Stormwater Management Planning and Design Manual (2003), a review of stormwater management best practices was completed using a treatment train approach, which evaluated at-source, conveyance system, and end-of-pipe alternatives. The potential best management practices were evaluated based on the stormwater management objectives listed in **Table 3-1** and selected for feasibility and applicability in the proposed development. The proposed low-impact development (LID) measures are subject to further evaluation at the SPA stage when more detailed site data are available and the site plan is finalized.

The following site characteristics were taken into consideration:

- Developable area of 2.48 ha west of Leslie Street, consisting of new development;
- The 7015 Leslie Street Property (on the east side of Leslie) has not been considered in the stormwater management analysis as the works proposed in this site and restoration, regarding and parking spot line painting, there is to be no additional impervious area or change to any servicing for this property;
- The receiving watercourse is German Mills Creek in the Don River watershed;
- The site is underlain with Clayey Silt to Silt and Clay Till; and groundwater encountered on-site ranges from 3.1 metres below ground surface (mbgs) at the shallowest to 10.7 mbgs.

The following are examples of at-source, conveyance and end-of-pipe controls that were evaluated for use in the proposed development. While evaluating the following controls, cost, feasibility, groundwater and grading constraints were taken into consideration.

At-Source Controls

At-source controls are at-source measures that reduce runoff prior to stormwater entering the conveyance system, such as:

- Increased topsoil depth;
- Passive Landscaping;
- Roof runoff to soak-away pits;
- Roof runoff to retention cisterns/rainwater harvesting;
- Roof downspout disconnection to grassed areas;
- Green Roofs; and
- Pervious pavements.

Conveyance Controls

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. Examples of conveyance controls include:

- Grassed Swales; and
- Pervious pipe system.

End-of-Pipe Controls

End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving watercourse. Typical end-of-pipe controls include:

- Wet ponds;
- → Wetlands;
- Dry ponds;
- Infiltration basins;
- Manufactured Treatment Device;
- Underground storage.

3.4.1 At-Source Controls Evaluation

It is noted these controls are proposed on private properties. Incorporating controls that require minimal routine maintenance can be an effective method in the treatment train approach to SWM. The following controls have been evaluated for use in the proposed development:

Increased Topsoil Depth

An increase in the proposed topsoil depth is recommended to promote at source infiltration (minimum 0.3 m depth). Increased topsoil depth will also contribute to at source quality and quantity control and will contribute to groundwater recharge. A topsoil depth of 0.30 m is proposed.

Passive Landscaping

Planting of gardens and other vegetation designed to minimize local runoff or use rainwater as a watering source can be used to reduce rainwater runoff by increasing evaporation, transpiration, infiltration and contribute to groundwater recharge. Homeowner education should be encouraged to use passive landscaping practices as part of the homeowner turnover package of information. By promoting infiltration through passive landscaping, water quality and quantity control is provided for the volume of water infiltrated. Passive landscaping can provide significant stormwater management benefits as part of the overall treatment train approach for the proposed development.

Roof Runoff to Soak-away Pits

Directing roof runoff to subsurface soak-away pits can be used to promote infiltration. By promoting infiltration water quality and quantity controls are provided for the volume of water retained. Infiltration of roof runoff can provide significant SWM benefits as part of the overall treatment train approach for the proposed development. Within the extents of the proposed underground parking garage a soak-away pit is not feasible.

Roof Runoff to Retention Cisterns/Rainwater Harvesting

Directing roof runoff to rainwater retention cisterns (i.e. rain barrels or greywater re-use tank) will contribute to water quality and water balance control. The retained rainwater can be harvested for re-use such as mechanical cooling, irrigation and/or greywater use. A retention cistern is proposed for this application as part of the active stormwater storage tank within the proposed parking garage.

Roof Downspout Disconnection to Grassed Areas

Directing roof leaders to grassed areas will contribute to water quality and water balance control by encouraging stormwater retention. Roof leaders are to be disconnected and directed to grassed areas. As the site is comprised of mid-high-rise buildings there are no downspouts therefore this LID is not applicable for this development.

Green Roofs

Best suited for flat roofs, green roofs provide rainwater retention in the growing medium where it is evaporated, evapo-transpired, or slowly drains away after the rainfall event. Although the proposed development consists of mid-rise to high-rise buildings, the roof plans do not reflect opportunities for green roof technology.

Pervious Pavement

By encouraging infiltration and filtration, pervious pavement can contribute to water quality, balance and erosion control. This technology is recommended as a feasible solution to provide infiltration, this is proposed in the visitor parking areas as it is less effective in heavily trafficked areas.

An evaluation of the suitability of potential lot level controls for the proposed development is provided in **Table 3.3**.

3.4.2 Conveyance Controls Evaluation

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. The following conveyance controls have been evaluated for use in the proposed development:

Enhanced Grassed Swales

Grassed swales conveying runoff promote infiltration, filtration, and evapotranspiration, contributing to water quality and quantity control, and contribute to groundwater recharge. It is recommended to use enhanced grass swales for this site, specifically to direct runoff from the undistributed area in between the temple and parking area as well as at the eastern parking lot overland flow outlet.

Perforated Pipe System – A perforated pipe system promotes infiltration of stormwater runoff. As the majority of the proposed storm sewers are adjacent to the proposed underground parking garage or located within the municipal right-of-way, a perforated pipe system is not recommended.

An evaluation of the suitability of potential conveyance BMPs is provided in Table 3-3.

3.4.3 Proposed End-of-Pipe Controls

While at-source and conveyance system controls are valuable components of the overall SWM plan, on their own they are not sufficient to meet the quantity and quality control objectives for the proposed development. End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving outlet. Accordingly, the following end-of-pipe controls have been evaluated for use in the proposed development:

Wet Ponds, Wetlands, Dry Ponds

Sized following the MECP criteria, these end of pipe facilities can provide water quality, quantity, and erosion control treatment. Due to the size of the proposed development and the presence of the underground parking level, a stormwater detention facility is not proposed.

Manufactured Treatment Device

A properly sized manufactured treatment device (MTD) can assist in providing MECP Enhanced (Level 1) treatment and can contribute to the treatment train approach for water quality control. The MTD unit specified shall be Environmental Technology Verification (ETV) certified, to provide 80% TSS removal. A MTD has been incorporated into the proposed stormwater treatment train.

Underground Storage

To meet quantity control targets, flow restrictors can be used to control stormwater release rates. To accommodate the reduced release rate, stormwater detention facilities are required to store stormwater runoff. Stormwater storage is proposed to be provided

by on-site underground storage chambers (e.g., CULTEC or approved equivalent) and/or underground storage tank (i.e. cast-in-place concrete tank) within the proposed development.

An evaluation of the suitability of potential conveyance BMPs is provided in Table 3-3.

3.4.4 Selection of Best Management Practices (BMPs)

Table 3-3 evaluates the suitability of the various stormwater management controls identified for the proposed development.

BEST MANAGEMENT PRACTICE	FEASIBLE (Yes/No)	RECOMMENDED (Yes/No)
Increased Topsoil Depth	Yes	Yes
Passive Landscaping	Yes	Yes
Roof Runoff to Soak-away Pits	Yes	No
Roof Runoff to Retention Cisterns/Rainwater Harvesting	Yes	Yes
Roof Downspout Disconnection to Grassed Areas	No	No
Green Roofs	Yes	No
Pervious Pavement	Yes	Yes
Enhanced Grassed Swales	Yes	Yes
Perforated Pipe System	No	No
Wet Ponds, Wetlands, Dry Ponds	No	No
Manufactured Treatment Device	Yes	Yes
Underground Storage	Yes	Yes

Table 3-3: Evaluation of Stormwater Best Management Practices (BMPs)

Table 3-4 below summarizes the recommended stormwater management BestManagement Practices (BMPs) for the proposed development. These practices aresubject to further evaluation at the SPA stage.

Stormwater Management Control	Recommended BMP
	Increased Topsoil Depth
	Passive Landscaping
At-Source Controls	Roof Runoff to Retention
	Cisterns/Rainwater Harvesting
	Pervious Pavement
Conveyance System Controls	Enhanced Grassed Swales
	Underground Stormwater
End Of Bing Controls	Detention System
End-Of-Pipe Controls	Manufactured Treatment
	Device

Table 3-4: Summary of the Recommended Best Management Practices (BMPs)

3.5 Proposed Storm Drainage

The proposed major and minor system flow patterns and drainage areas are shown on **Figures 3.4** & **3.5**. As illustrated, the proposed development will convey runoff to one of two outlet locations; the existing storm sewer infrastructure on Waterloo Court, and via overland flow to German Mills Creek. Major system flow from northern area of the site will continue to flow eastward to German Mills Creek, the minor system flows will be captured and conveyed through proposed storm sewers to the existing storm outfall east of Waterloo Court (Catchment 201, 202, & 204, **Figure 3.4 & 3.5**). The major and minor flows from the National Centre (7200 Leslie) will be captured via a proposed internal storm sewer system (Catchment 203, **Figure 3.4**) and detained on-site in an underground storage system and discharged into proposed MH4.

3.6 Quantity Control

Quantity control for the proposed development is required to control the proposed runoff to the allowable release rates as described in **Section 3.2.** The allowable release rates are to be achieved through proposed on-site underground storage via a cast-in-place stormwater management tank in the National Centre underground parking level.

Table 3-5, presents a summary of the release rates and storage requirements for each of the catchment areas shown in **Figures 3.4** & **3.5**.

Catchment	100 Year Allowable Release Rate (L/s)	100 Year Proposed Release Rate (L/s)	Storage Required (m ³)
202	213.2	35	
203	210.2	103.3	225.7

Table 3-5: Summary of 100 Year Release Rates and Storage to the Leslie Street Outlet

Table 3-6: Proposed Release Rate Summary

Return Period Storm	Allowable Release Rate to the Leslie Street Outlet [†] (L/s)	Proposed Release Rate to the Leslie Street Outlet (L/s)	Total Allowable Release Rate to German Mills Creek [†] (L/s)	Proposed Release Rate to German Mills Creek (L/s)
2 Year	95.7	85.0	349.2	349.1
5 Year	132.8	98.4	484.4	478.4
10 Year	161.4	108.0	588.6	577.2
25 Year	192.5	122.6	753.2	749.4
50 Year	211.4	130.1	883.2	871.7
100 Year	213.2	138.3	1087.2	1002.2

Note: +Per Table 3.2

For further detail on the quantity control measures, please refer to the detailed calculations provided in **Appendix C**.

3.7 Quality Control

Quality control will be provided by a treatment train of Low Impact Development (LID) techniques which will include a manufactured treatment device (MTD) located downstream of the Temple & National Centre (Figure 2.1), enhanced grassed swales with an infiltration component and permeable pavers, illustrated on Figures 3.4 & 3.5.

The MTD is to be sized for a minimum of 80% TSS removal. A HydroDome unit or approved equivalent with ETV Certification for 80% TSS removal is to be utilized and detailed through the SPA Stage.

The proposed enhanced swale, as shown on **Figure 3.5** will collect runoff from the eastern parking area via overland flow. To achieve the quality control objectives, the enhanced grassed swale has a flow depth less than 0.10 m and a velocity less than 0.5 m/s in the 25 mm 4-hour storm event. The calculations for the proposed enhanced grassed swale, ensuring that quality control is achieved is provided in **Appendix C**. Calculations to illustrate the infiltration volumes required to meet the MECP quality control objectives in the permeable pavers are provided in **Appendix C**.

3.8 Erosion & Volume Control

As outlined in **Table 3-1**, erosion control is required in the form of the retention of the first 5 mm of rainfall on-site. The erosion control criterion for the entire development (the National Centre and Temple (7200 & 7290) is proposed to be achieved through the use of permeable pavers across the eastern parking lot and infiltration via the enhanced grassed swale at the outlet of the eastern parking area, as well as a water re-use chamber in the underground storage tank of the National Centre. The required volume to achieve the 5 mm retention requirement across the development is 45.7 m³. The permeable pavers proposed offer 73.3 m³ of storage in the clear stone base, exceeding the required retention volume. In addition to the proposed permeable pavers, a water re-use chamber below the outlet invert of the underground storage tank of the National Centre noted in *Section 3.6* above, as well as an enhanced grassed swale with an infiltration component on the eastern overland outlet from the parking lot are proposed. These LIDs are to be further refined at the detailed design stage. Supporting calculations are provided in **Appendix C**.

It is noted that permeable pavers or approved equivalent are only proposed in the parking spots of the parking area. Due to the challenges to maintain the permeability of the material in a high traffic area, we do not recommend the installation of permeable material in either the driveways or laneways. The visitor parking spaces offer a lower traffic area where vehicle turning is limited and the area can be easily barricaded for maintenance purposes.

3.9 Water Balance

As noted in **Table 3.1**, the subject site does not fall within a WHPA-Q source protection area, therefore, the existing annual infiltration volume is not required to be maintained in the post-development condition.

The equivalent of the 5 mm rainfall event is required to be retained on-site in accordance with the TRCA's erosion control and water balance criteria. As discussed in **Section 3.8**, the required 5 mm retention volume is exceeded through the use of permeable pavement, an enhanced grassed swale, and a re-use chamber below the outlet invert of the proposed underground storage tank of the National Centre. Water re-use in this chamber is to be utilized through mechanical cooling and irrigation.

The Hydrogeological Assessment (Terraprobe, December 2023) details the water balance calculations and is submitted under separate cover for review, however, relevant excerpts are provided in **Appendix B**.

4.0 Sanitary Servicing

4.1 Existing Sanitary Servicing

As indicated in the record drawings received from the City of Markham (**Appendix B**), the sizes and locations of the existing sanitary sewers surrounding the site are:

- A regional twin 1200 mm diameter concrete sanitary forcemain sewer on Leslie Street flowing north; and
- A municipal 200 mm diameter PVC sanitary sewer on Waterloo Court flowing east across Leslie Street and under German Mills Creek, where it connects to the existing municipal 750 mm diameter trunk sewer.

The Regional Leslie Sanitary Pumping Station is located south of the site, on the east side of Leslie Street.

4.2 Proposed Sanitary Servicing

Based on City of Markham design criteria, the proposed ancillary structures and washrooms, the proposed temple, and the new National Centre will generate a total sanitary flow of 2.2 L/s. This is based on the proposed development's site areas and City of Markham's Sanitary Sewer Design and Design Flow Calculation criteria (refer to City of Markham Engineering Design Criteria, Section – D, Subsection D2.2), as shown on **Figure 4.2** and the Sanitary Design Sheet included in **Appendix D**. The private sanitary servicing system from the proposed development is proposed to connect to the existing municipal 200 mm diameter PVC sanitary sewer on Waterloo Court via a new manhole at the intersection of Waterloo Court and Leslie Street, as shown on **Figure 4.1**. Per the Waterloo Court plan and profile (provided in **Appendix B** for reference), the proposed sanitary sewer has approximately 3.20 m of cover at the proposed service connection, which is sufficient to service the majority of the proposed development with a gravity connection. At the SPA stage, local sanitary pumping solutions for lower areas of the proposed development (i.e. underground parking) will be investigated.

A downstream sanitary sewer capacity analysis has been completed to evaluate the residual capacity of the downstream sewers up to the existing 750 mm diameter sanitary trunk sewer under German Mills Creek. Based on the result of this analysis, the downstream sanitary sewer has sufficient capacity to accommodate the proposed development. A preliminary sanitary drainage scheme is presented in **Figure 4.2** and the accompanying design sheets are included in **Appendix D** for reference.

The private sanitary sewers within the site will have slopes ranging between 0.5% and 2% (typically) and will be provided at 2 m to 5 m deep.

The sanitary servicing system will be designed in accordance with the City of Markham and MECP criteria, including but not limited to:

- Residential Sanitary Generation Rate: 365 l/c/d
- Institutional Population Density: 60 people/ha of GFA
- Parks and Recreation Density: 60 people/ha gross land area
- Existing Residential Population Density: 4.0 people/unit
- Peaking Factor: Harmon (Max. 4.0, Min. 1.5)
- Infiltration Rate: 0.26 L/s/ha
- Minimum Pipe Size: 200 mm diameter
- Minimum Pipe Cover: 2.75 m
- Minimum Full-Flow Velocity: 0.75 m/s
- Maximum Full-Flow Velocity: 3.65 m/s

5.0 Water Servicing

5.1 Existing Water Servicing

As indicated in the record drawings received from the City of Markham (**Appendix B**), the following existing watermains surround the site:

- A municipal 300 mm diameter watermain on the west side of Leslie Street fronting the development and continuing south along Leslie to Steeles Avenue and north to the end of the existing driveway elbow; and
- A municipal 150 mm diameter ductile iron watermain on the north side of Waterloo Court.

According to record drawings, the existing building is being serviced by an existing 25mm water service connection on Leslie Street, approximately 26.0m south of an existing fire hydrant, directly fronting the site. This existing 25mm water service connection shall be removed. A hydrant flow test was completed on August 3, 2022 to determine existing flows and pressures for the Leslie Street and Waterloo Court watermain systems. According to the hydrant flow test, the available flow at 20 psi is 281 L/s. The hydrant flow test results are included in **Appendix E** for reference.

5.2 Proposed Water Servicing

The water supply for the proposed development and ancillary structures will be provided from the existing 300 mm diameter watermain on Leslie Street. A water meter and backflow preventer for the proposed development will be located in underground chambers behind Leslie Street property line. Preliminary layout for the proposed watermain system is provided on **Figure 5.1**.

A water distribution analysis was completed by Municipal Engineering Solutions (MES) (**Appendix E**) and was designed in accordance with the City of Markham and Ontario Building Code criteria including:

- Residential water usage rate: 365 l/c/d
- Minimum Pipe Size: 150 mm diameter
- Minimum Pipe Depth: 1.75 m
- Maximum Hydrant Spacing: 90 m

The water demand calculations have been provided by Municipal Engineering Solutions (MES) and are provided in **Appendix E**. Based on the population and demand data above, the maximum day demand is 2.94 L/s and the peak hour demand is 5.90 L/s. The fire demand has been calculated to be 117 L/s for the temple, 117 L/s for the national centre, 133 L/s for the welcome center, and 117 L/s for the log cabin/visitor center based on the FUS criteria.

According to the water model completed by MES, using the hydrant flow test results as boundary conditions to calibrate the model, the available fire flow meets or exceeds the minimum fire demands at the minimum pressure of 140 kPa. For further detail on the hydraulic modelling assumptions and results, please refer to the MES report provided in **Appendix E**.

6.0 Grading

6.1 Existing Grading Conditions

The existing topography has slopes in the range of 0.5% to 50%. The ground surface elevations through the study area range from approximately 153.93 m in the east side of the site to approximately 184.37 m in the northwest corner.

6.2 Proposed Grading Concept

In general, the proposed development will be graded in a manner which satisfies the following goals:

Satisfy the City of Markham lot and road grading criteria, create required depth for sanitary sewer, as well as provision of an efficient earthworks program, including:

- Minimum Road Grade: 0.7%
- Maximum Road Grade: 6.0%
- Minimum Driveway Grade: 2%
- Maximum Driveway Grade: 8%
- Minimize the need for retaining walls
- Minimize the volume of earth to be moved and minimize cut/fill differentials
- Achieve the stormwater management objectives required for the proposed development.

A preliminary grading plan is provided on **Figure 6.1**. At the site plan application stage, the preliminary grading will be subject to a more in-depth analysis in an attempt to balance the cut and fill volumes and minimize slopes and retaining walls.

7.0 Leslie Street Modifications

7.1 Existing Conditions

The floodplain for German Mills Creek currently encompasses a portion of the Leslie Street Right-of-way. Based on the Regional Storm depth and velocity at cross section 538.98 in the TRCA's Don River Hydraulic Model for German Mills Creek Reach 3, it creates an unsafe ingress/egress condition for the proposed development, as well as for the Regional sanitary pumping station and the existing residential units on Waterloo Court.

Table 7-1: Existing Conditions – Leslie Flood Spill

Storm	Flood	Velocity Right	Leslie Street	Depth	Depth*Velocity
Event	Elevation	Bank (m/s)	Low Point (m)	(m)	(m²/s)
Regulatory	152.25	1.52	151.08	1.17	1.78

As demonstrated in **Table 7-1** above, the Depth*Velocity is > 0.8 m2/s which fails the Ontario Ministry of Natural Resources & Forestry (MNRF) safety guidelines discussed in the "Technical Guide – River and Strem Systems: Flooding Hazard Limit" (2002). The flooding depth is in excess of 0.98 m, a threshold sufficient to float young school children. As the depth > 0.3 m, this location is not safe for the passage of cars, but as the depth is < 1.2 m, it is safe for emergency fire vehicles, furthermore as the velocity is < 4.5 m/s, this is acceptable for emergency fire vehicles.

The existing flood plain is shown on Figure 7.1 and Figure 7.2.

7.2 Proposed Conditions

In order to provide safe ingress/egress access for the proposed development and the surrounding neighbourhood during regional flood events, the portion of Leslie Street below the regional floodline will be raised 0.30 m above the regional flood elevation of 152.25 m, to a minimum elevation of 152.55 m. Leslie Street will also be redesigned to include lay—by parking in appropriate areas and a multi-use path linking the lake to lake trail to Steeles Ave. Pavement improvements to meet municipal road standards will also be incorporated. During the SPA stage of the project, a more detailed road design and an updated floodplain model will be prepared in support of the new Leslie Street alignment. The existing adjacent parking lot to the east is being revised to conform with the latest Leslie Street design & configuration including shifting the entrance north. The preliminary layout of the Leslie Street redesign and grading is shown on **Figure 7.3**.

8.0 Erosion and Sediment Control During Construction

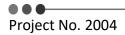
During the detailed design stage in support of Site Plan approval, erosion and sediment control measures will be designed with a focus on erosion control practices (such as stabilization, track walking, staged earthworks, etc.) as well as sediment controls (such as temporary fencing, mud mats, catchbasin sediment control devices, check dams, etc.). These measures will be designed and constructed as per the Erosion and Sediment Control Guide for Urban Construction document (TRCA, 2019). A detailed erosion and sediment control plan will be prepared for review and approval by the City of Markham and TRCA prior to any proposed grading being undertaken. This plan will address phasing, inspection and monitoring aspects of erosion and sediment control. All reasonable measures will be taken to ensure sediment loading to the adjacent watercourse and properties are minimized both during and following construction.

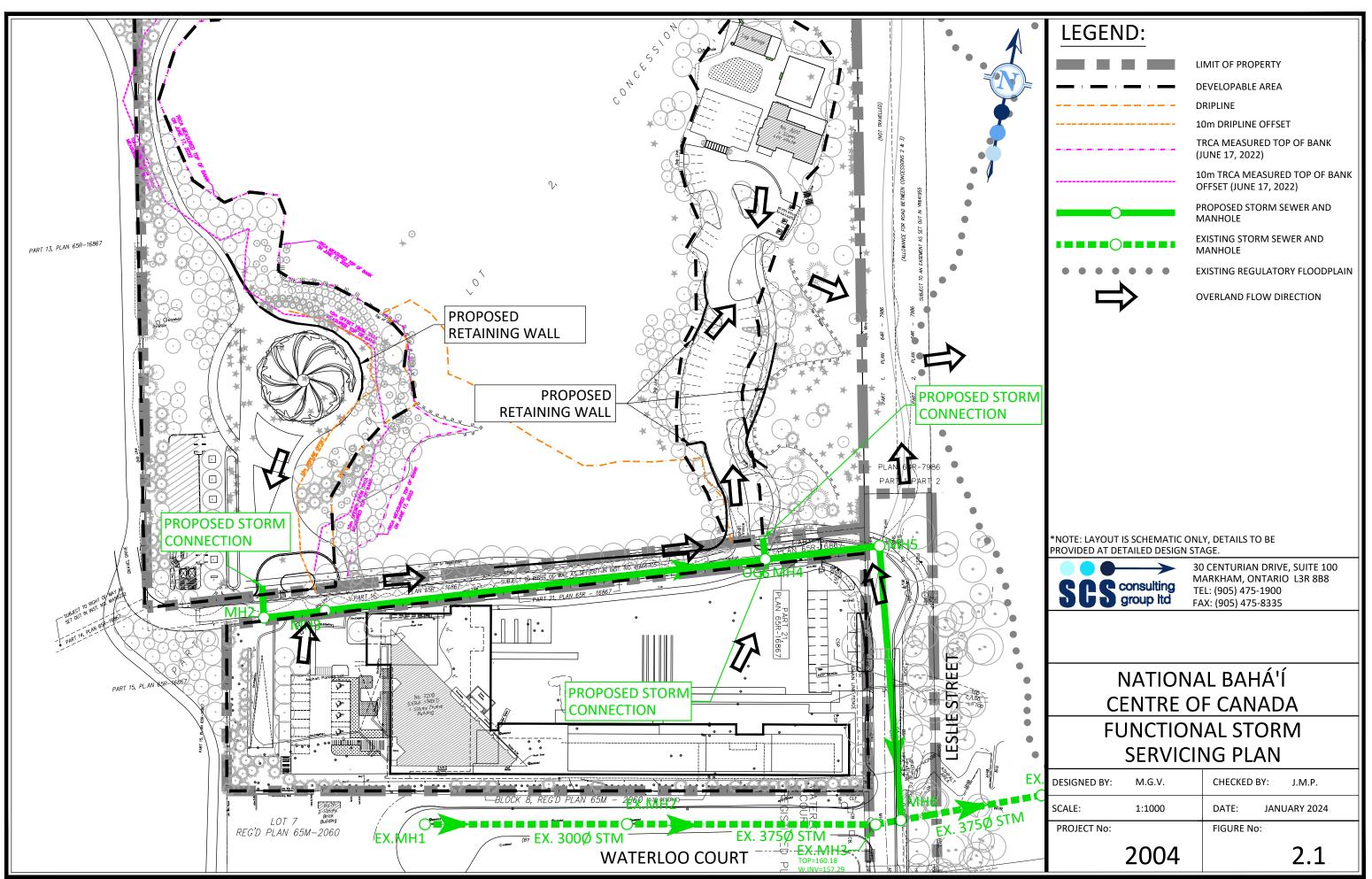
9.0 Summary

This Functional Servicing and Stormwater Management Report has outlined the means by which:

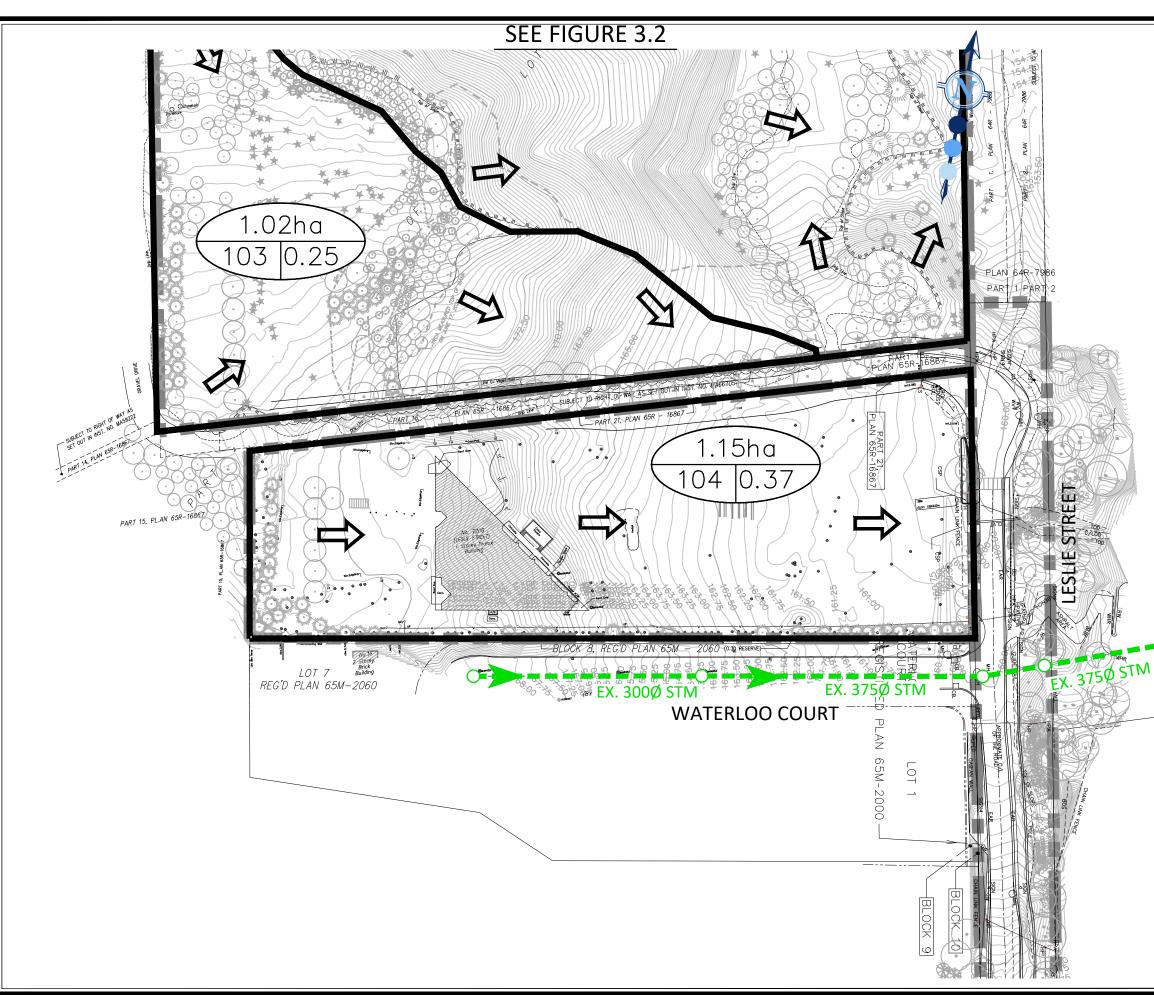
- The site can be serviced by full municipal services (storm, sanitary and water);
- The Stormwater Management Criteria can be achieved and has been noted to which the site plan shall conform to during detailed design;
 - Quantity Control: Quantity control will be provided via a cast-in-place underground storage tank in the National Centre underground parking level to control proposed runoff rates in the 2 through 100 year storm events to the allowable levels;
 - Quality Control: MECP Enhanced (Level 1) water quality protection is provided through the use of an MTD, Permeable Pavers & an Enhanced Grassed Swale.
 - Erosion/Volume Control: The required volume to achieve the 5 mm retention requirement across the development is proposed to be achieved via permeable pavers, a water re-use chamber in the National Centre, as well as an enhanced grassed swale with an infiltration component on the eastern overland outlet from the parking lot; and
 - *Water Budget:* 5mm retention is provided as noted above.
- A safe ingress/egress condition to the proposed development can be provided by raising the Leslie Street elevation above the Regional Flood level and will be further detailed during SPA application.

Respectfully Submitted:


SCS Consulting Group Ltd.



Peter Chen, P.Eng., pchen@scsconsultinggroup.com


Michael Ventresca, P. Eng., mventresca@scsconsultinggroup.com

P:\2004 Bahai National Centre\Design\Reports\FSP\2004P-FSR (Site Plan).docx

File: P: \2004 Bahai National Centre \Drawings \FSP \Fig \Report Figures \2004P-2.1-SERV-STRM.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:43pm

LEGEND:

0.04ha

104 79%

LIMIT OF DEVELOPMENT

MAJOR SYSTEM -OVERLAND FLOW

MINOR SYSTEM -STORM SEWER

STORM DRAINAGE BOUNDARY

EXTERNAL STORM DRAINAGE BOUNDARY

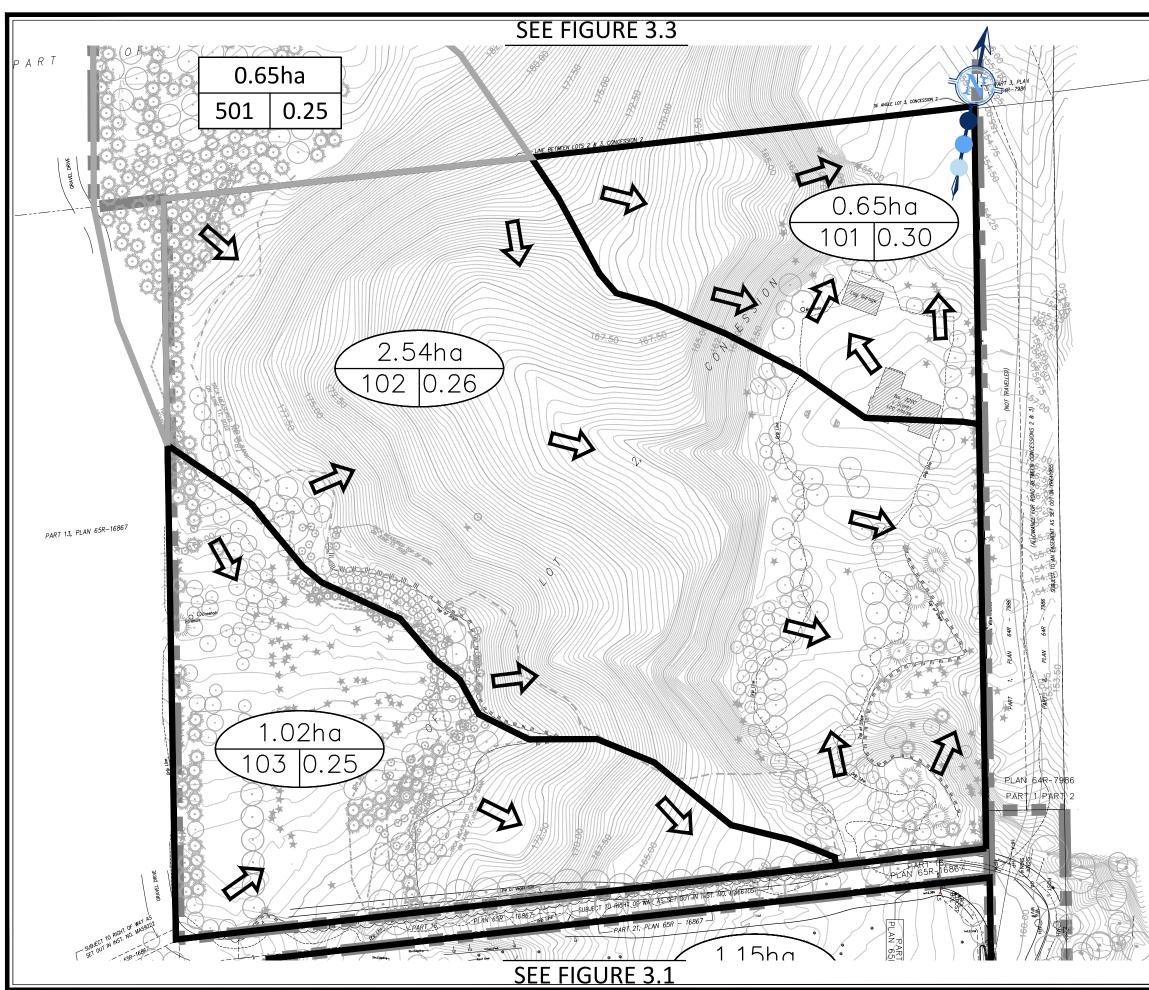
DRAINAGE AREA (HECTARES)

PERCENT (%) IMPERVIOUS

CATCHMENT ID

EXISTING STORM SEWER AND MANHOLE

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.



30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335

NATIONAL BAHÁ'Í **CENTRE OF CANADA EXISTING STORM DRAINAGE** FIGURE 1

DESIGNED BY:	M.G.V.	CHECKED BY: J.M.P.
SCALE:	1:1000	DATE: JANUARY 2024
PROJECT No:		FIGURE No:
	2004	3.1

File: P: \2004 Bahai National Centre \Drawings \FSP \Fig \Report Figures \2004P-3.1-3.3-EXST.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:45pm

LEGEND:

0.04ha

104 79%

LIMIT OF DEVELOPMENT

MAJOR SYSTEM -OVERLAND FLOW

MINOR SYSTEM -STORM SEWER

STORM DRAINAGE BOUNDARY

EXTERNAL STORM DRAINAGE BOUNDARY

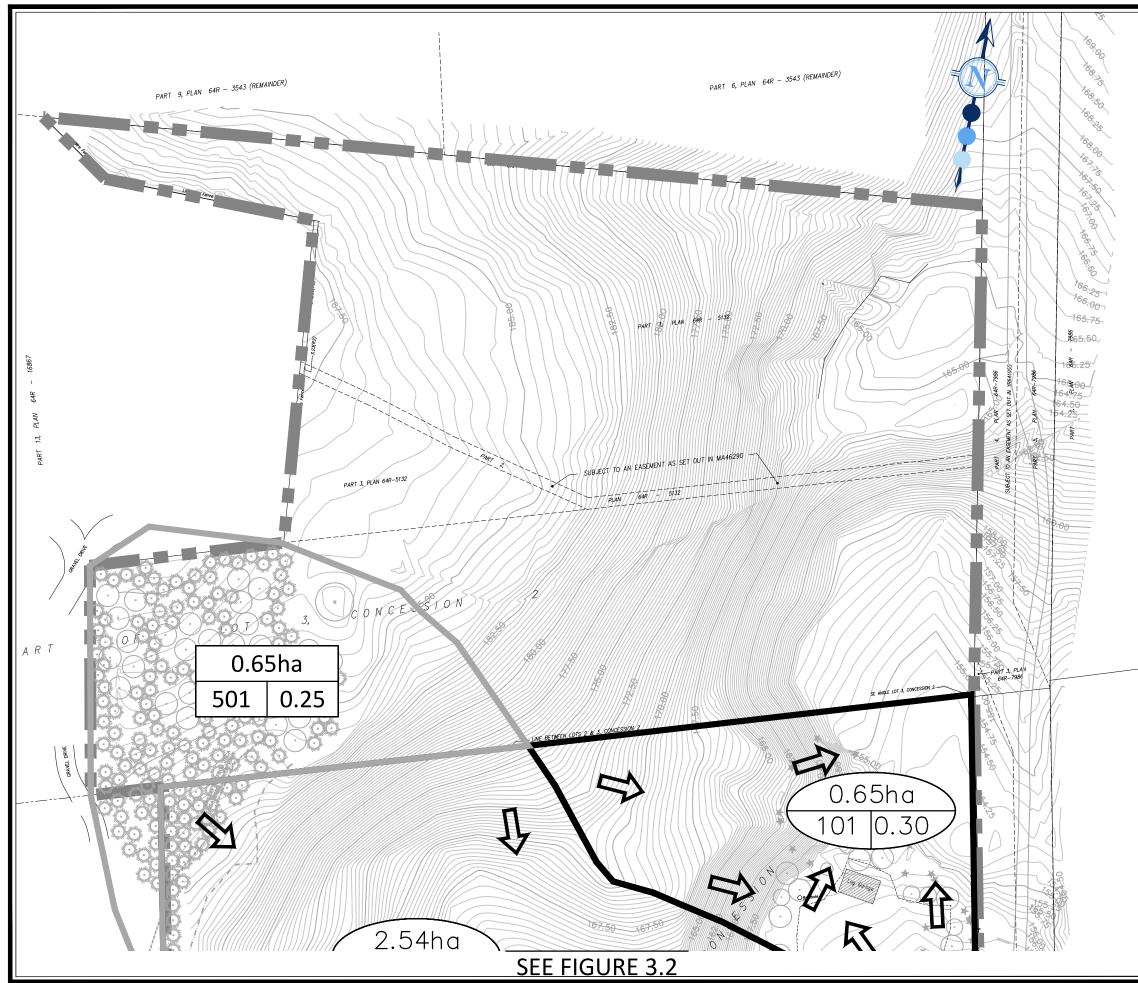
DRAINAGE AREA (HECTARES)

PERCENT (%) IMPERVIOUS

CATCHMENT ID

EXISTING STORM SEWER AND MANHOLE

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.



30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335

NATIONAL BAHÁ'Í **CENTRE OF CANADA EXISTING STORM DRAINAGE** FIGURE 2

DESIGNED BY:	M.G.V.	CHECKED BY: J.M.P.
SCALE:	1:1000	DATE: JANUARY 2024
PROJECT No:		FIGURE No:
	2004	3.2

File: P: \2004 Bahai National Centre \Drawings \FSP \Fig \Report Figures \2004P-3.1-3.3-EXST.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:45pm

LEGEND:

0.04ha

104 79%

LIMIT OF DEVELOPMENT

MAJOR SYSTEM -OVERLAND FLOW

MINOR SYSTEM -STORM SEWER

STORM DRAINAGE BOUNDARY

EXTERNAL STORM DRAINAGE BOUNDARY

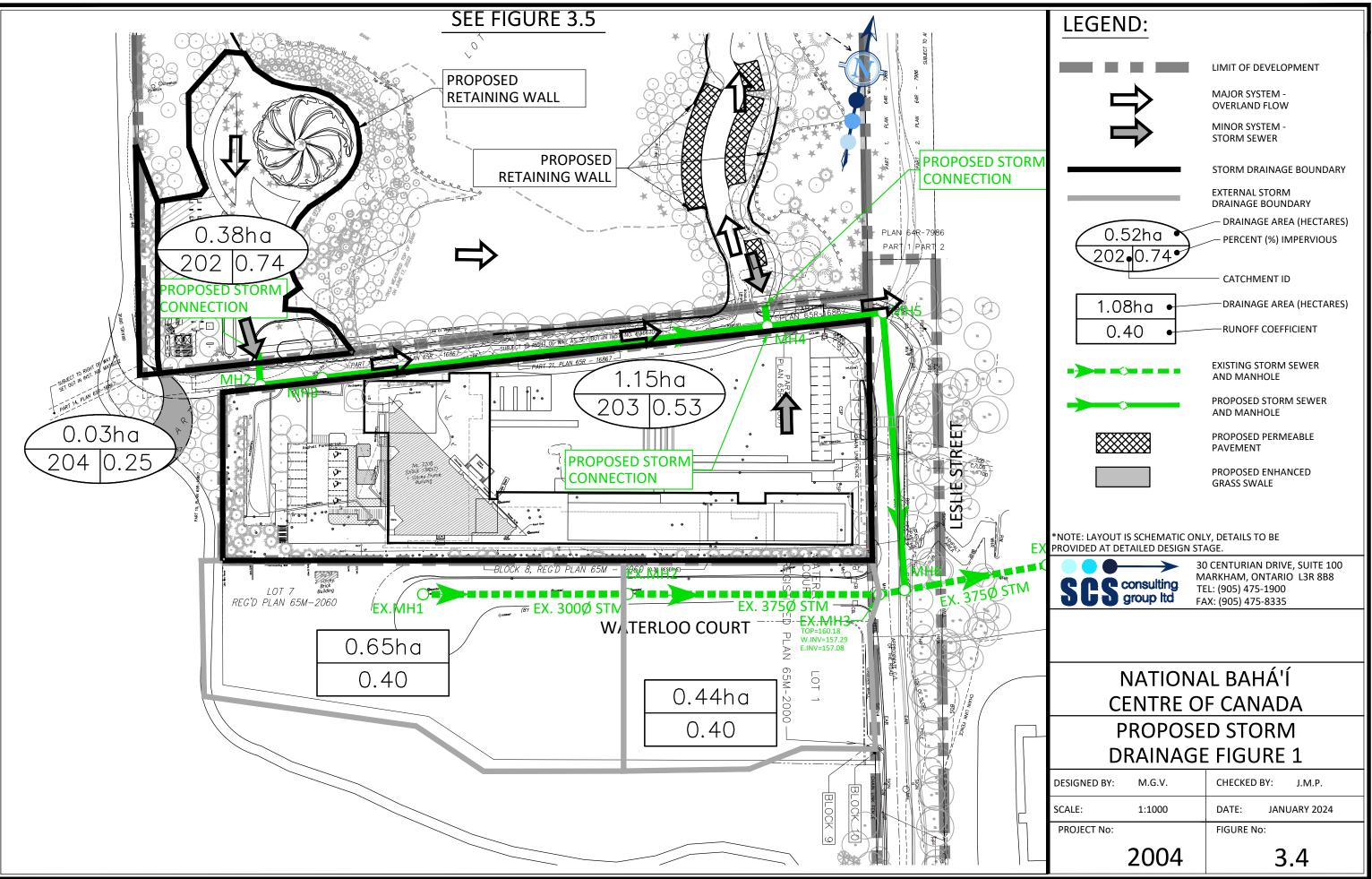
DRAINAGE AREA (HECTARES)

PERCENT (%) IMPERVIOUS

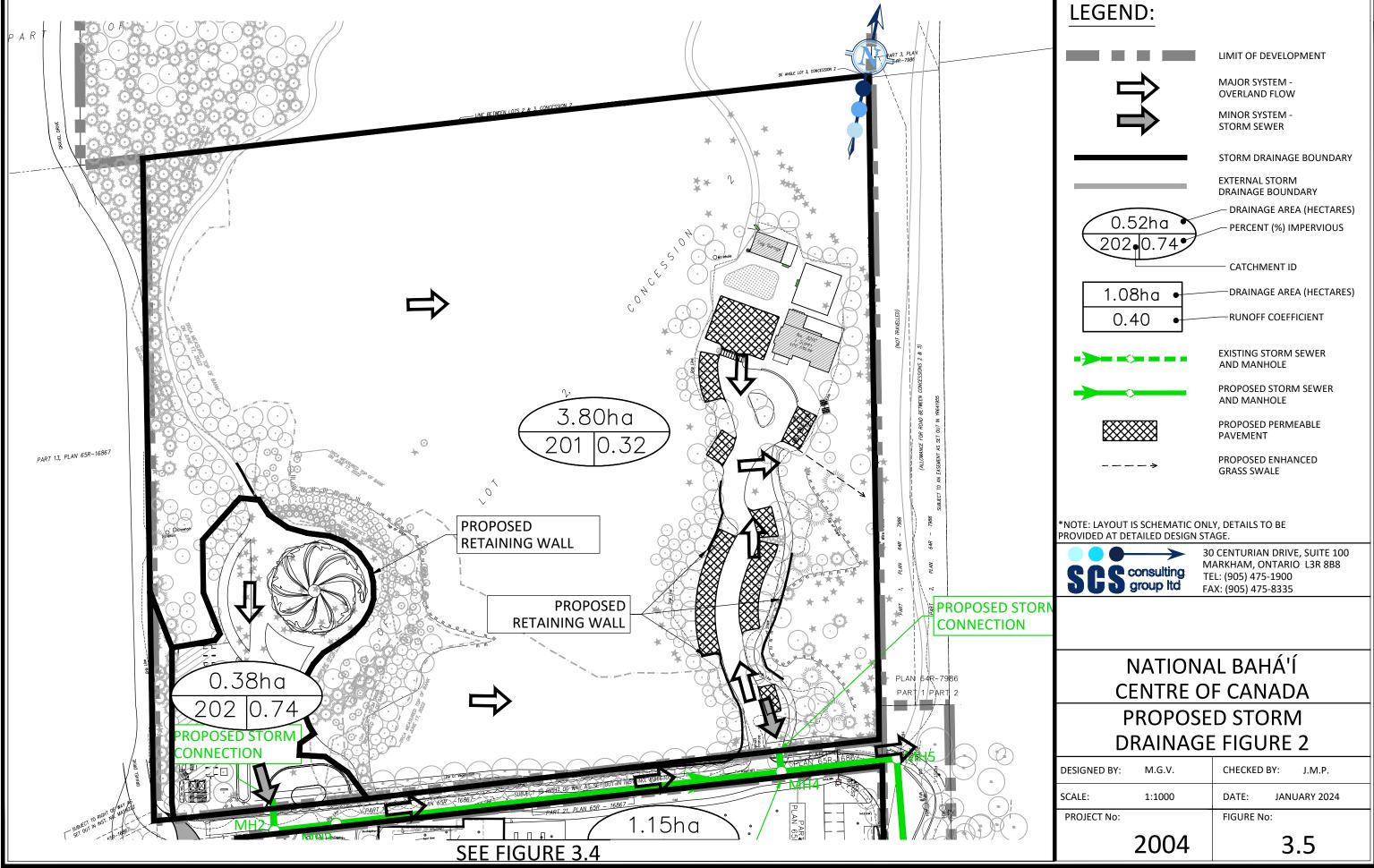
CATCHMENT ID

EXISTING STORM SEWER AND MANHOLE

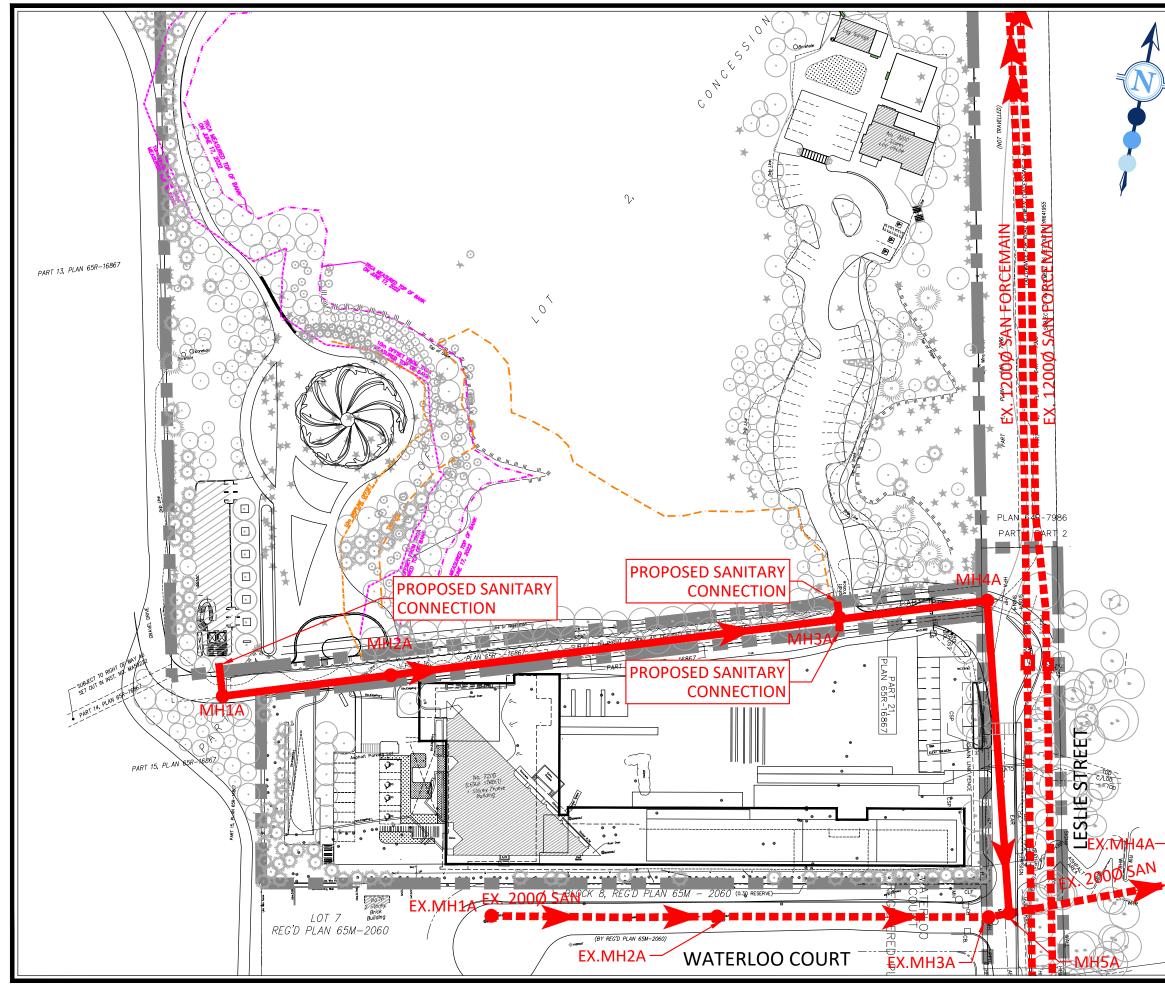
*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

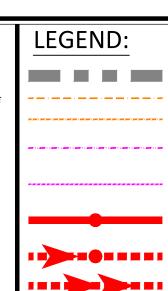


30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335


NATIONAL BAHÁ'Í **CENTRE OF CANADA EXISTING STORM DRAINAGE** FIGURE 3

DESIGNED BY:	M.G.V.	CHECKED BY: J.M.P.
SCALE:	1:1000	DATE: JANUARY 2024
PROJECT No:		FIGURE No:
	2004	3.3


File: P: \2004 Bahai National Centre \Drawings \FSP \Fig \Report Figures \2004P-3.1-3.3-EXST.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:45pm



File: P:\2004 Bahai National Centre\Drawings\FSP\Fig\Report Figures\2004P-3.4-3.6-PROP.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:49pm

File: P: \2004 Bahai National Centre \Drawings \FSP \Fig \Report Figures \2004P-3.4-3.6-PROP.dwg - Revised by <JLIM> : Wed, Jan 31 2024 - 6:49pm

LIMIT OF PROPERTY

DRIPLINE

10m DRIPLINE OFFSET

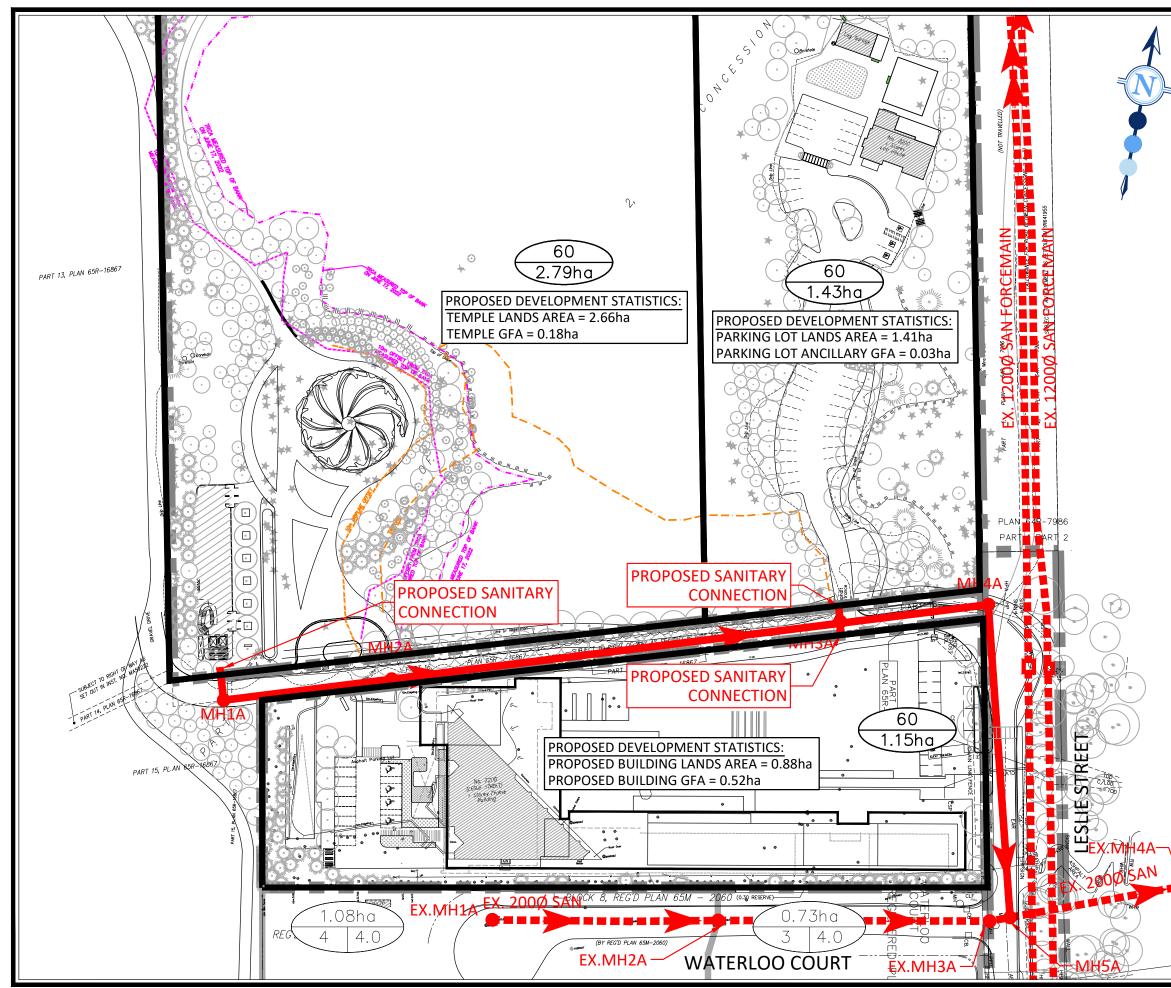
TRCA MEASURED TOP OF BANK (JUNE 17, 2022)

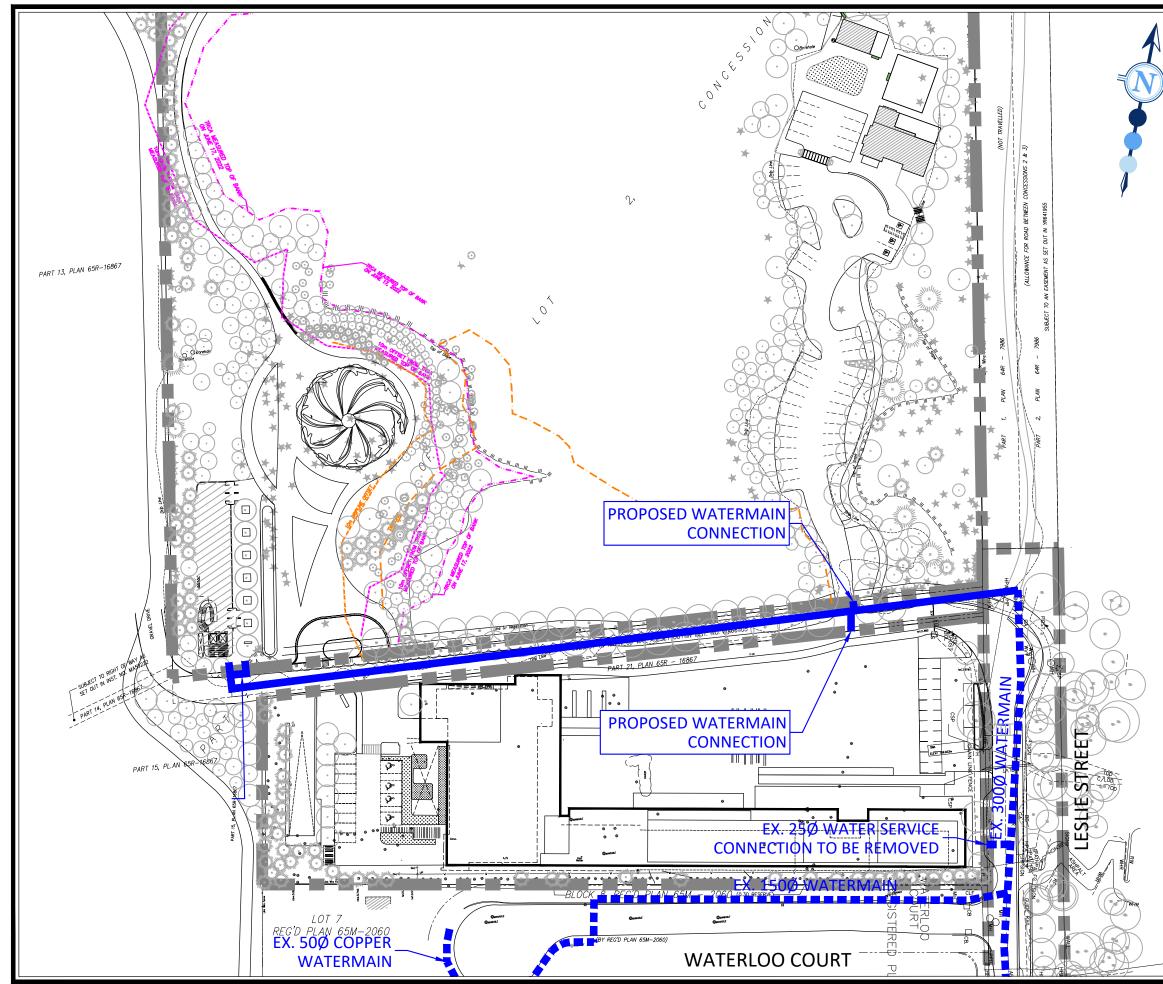
10m TRCA MEASURED TOP OF BANK OFFSET (JUNE 17, 2022)

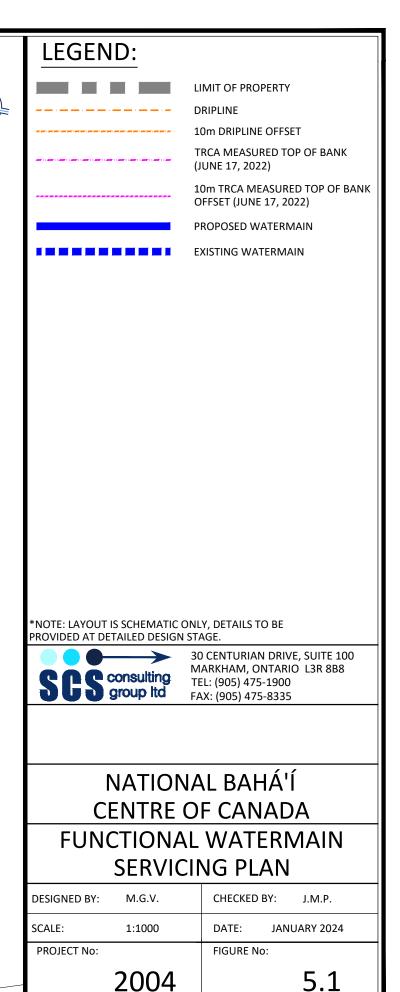
PROPOSED SANITARY SEWER AND MANHOLE

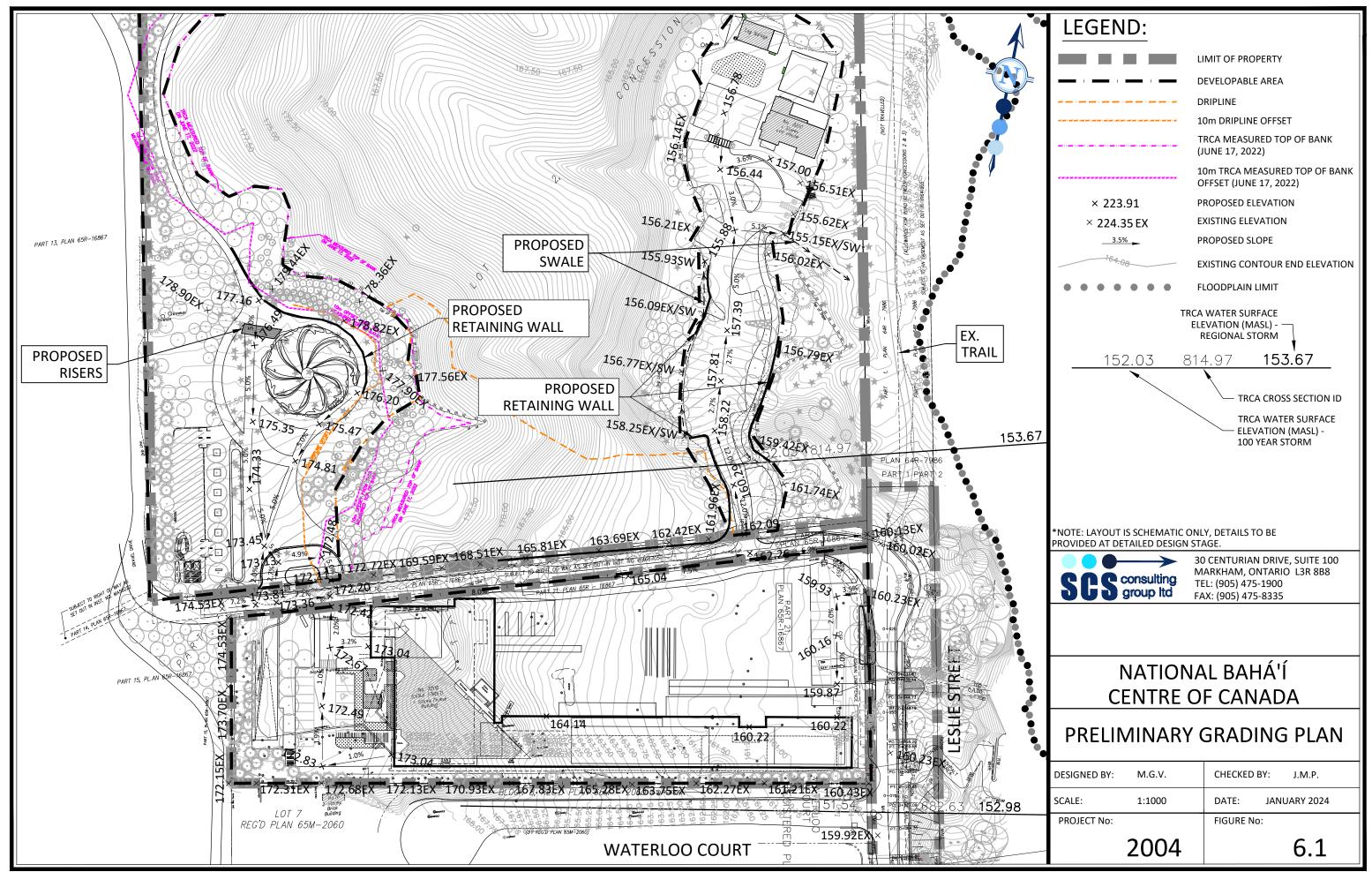
EXISTING SANITARY SEWER AND MANHOLE

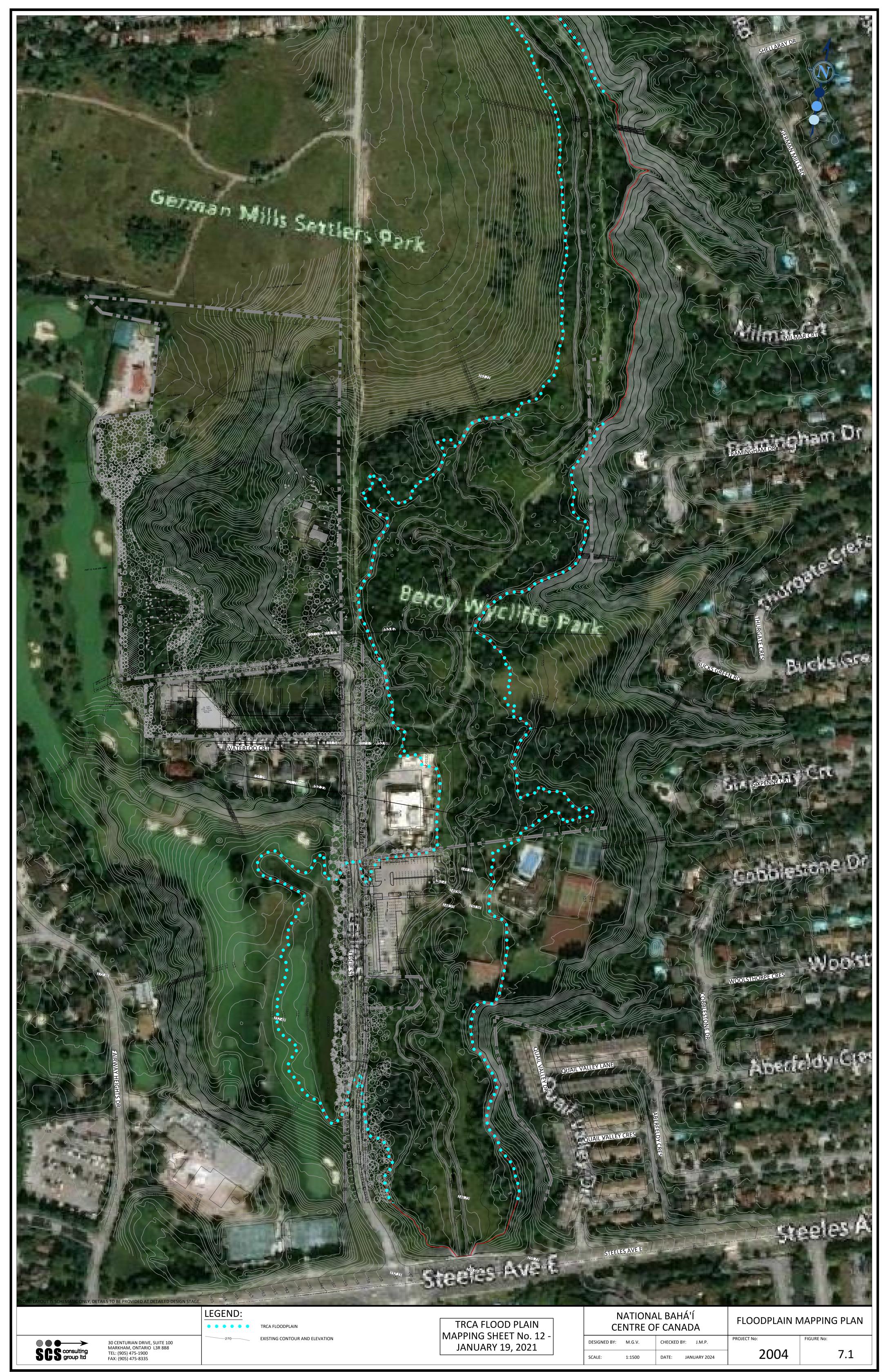
EXISTING SANITARY FORCEMAIN

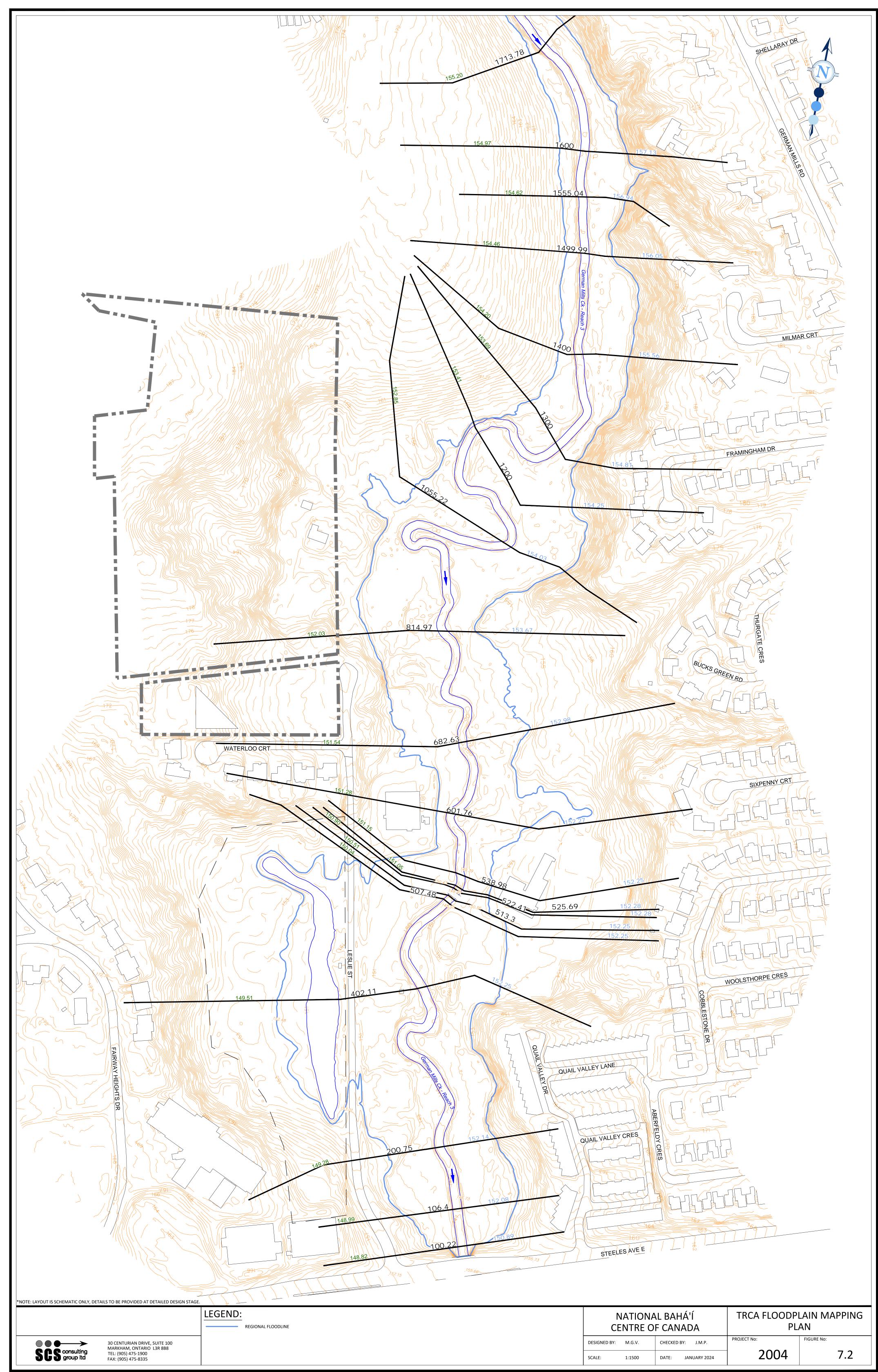

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

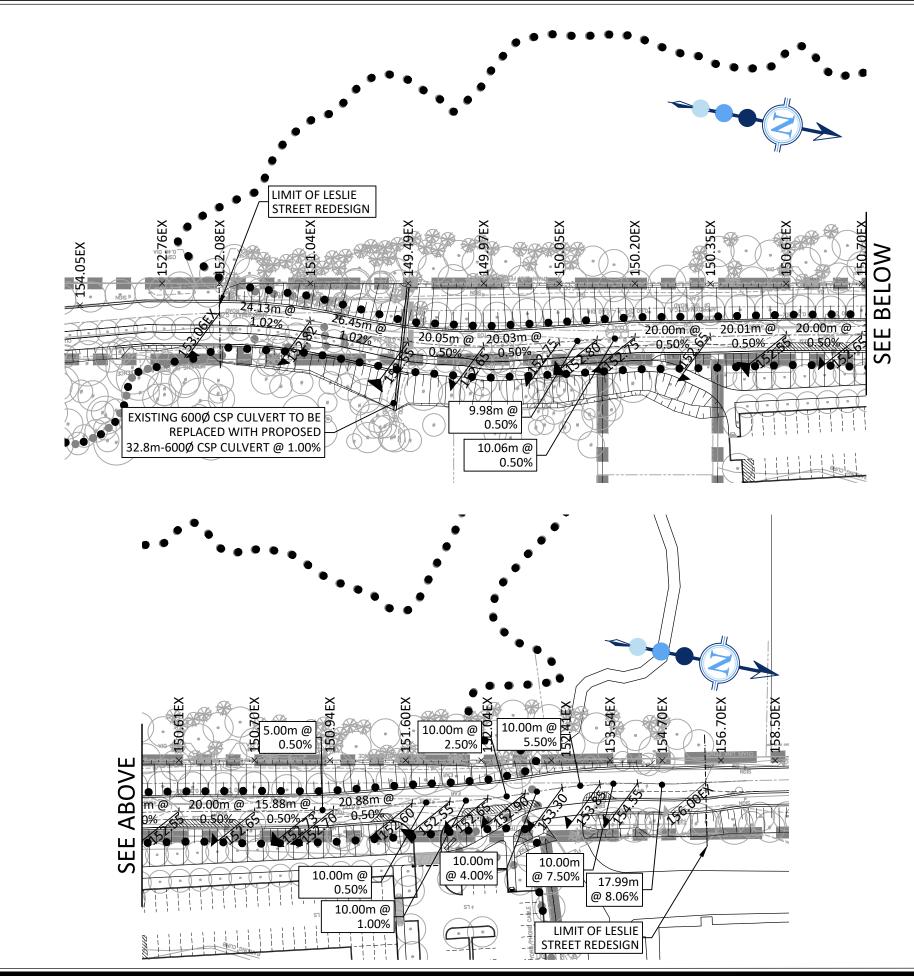

30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335

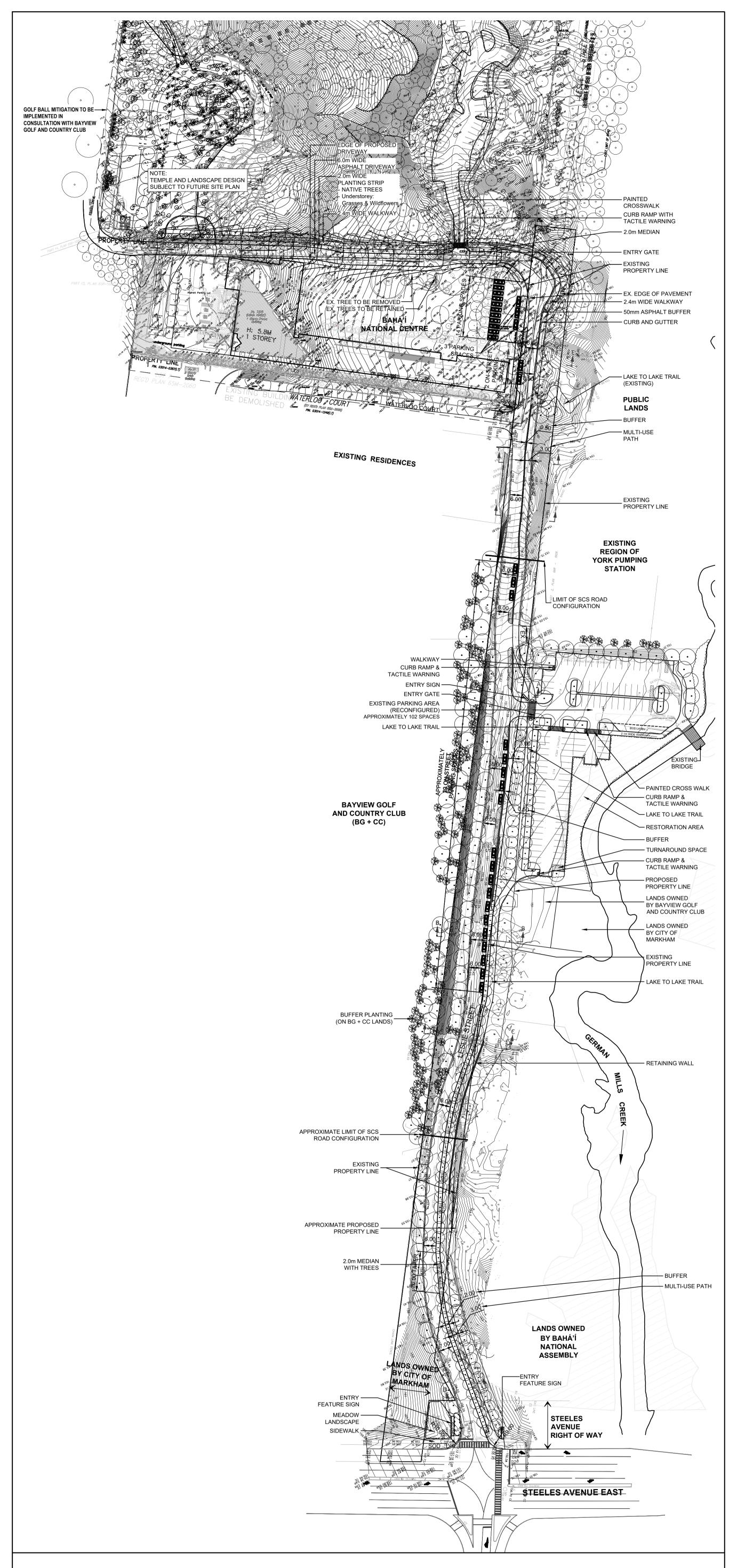

NATIONAL BAHÁ'Í **CENTRE OF CANADA FUNCTIONAL SANITARY** SERVICING PLAN


	DESIGNED BY:	M.G.V.	CHECKED BY: J.M.P.
	SCALE:	1:1000	DATE: JANUARY 2024
	PROJECT No:		FIGURE No:
_		2004	4.1




	LEGEND:		
		LIMIT OF PROPERTY	
		- DRIPLINE	
		10m DRIPLINE OFFSET	
		TRCA MEASURED TOP OF BANK (JUNE 17, 2022)	
		10m TRCA MEASURED TOP OF BANK OFFSET (JUNE 17, 2022)	
		PROPOSED SANITARY SEWER AND MANHOLE	
		EXISTING SANITARY SEWER AND MANHOLE	
		EXISTING SANITARY FORCEMAIN	
		PROPOSED SANITARY DRAINAGE BOUNDARY	
		EXISTING SANITARY DRAINAGE BOUNDARY	
	60	POPULATION PER HECTRARE	
	1.43ha	—— DRAINAGE AREA (HECTARES)	
	0.73ha	EXISTING DRAINAGE AREA (HECTARES)	
	3 4.0 •	EXISTING POPULATION PER UNIT	
		EXISTING NUMBER OF UNITS	
	*NOTE: LAYOUT IS SCHEMAT PROVIDED AT DETAILED DES	SIGN STAGE. 30 CENTURIAN DRIVE, SUITE 100 MARKHAM ONTARIO 138 888	
	SGS consulting group ltd	TEL: (905) 475-1900	
		FAX: (905) 475-8335	
	NATIONAL BAHÁ'Í		
	CENTRE OF CANADA		
		NARY SANITARY	
DRAINAGE PLAN			
	DRAI DESIGNED BY: M.G.V.	CHECKED BY: J.M.P.	
	SCALE: 1:1000	DATE: JANUARY 2024	
	PROJECT No:	4 4.2	
5:	\		

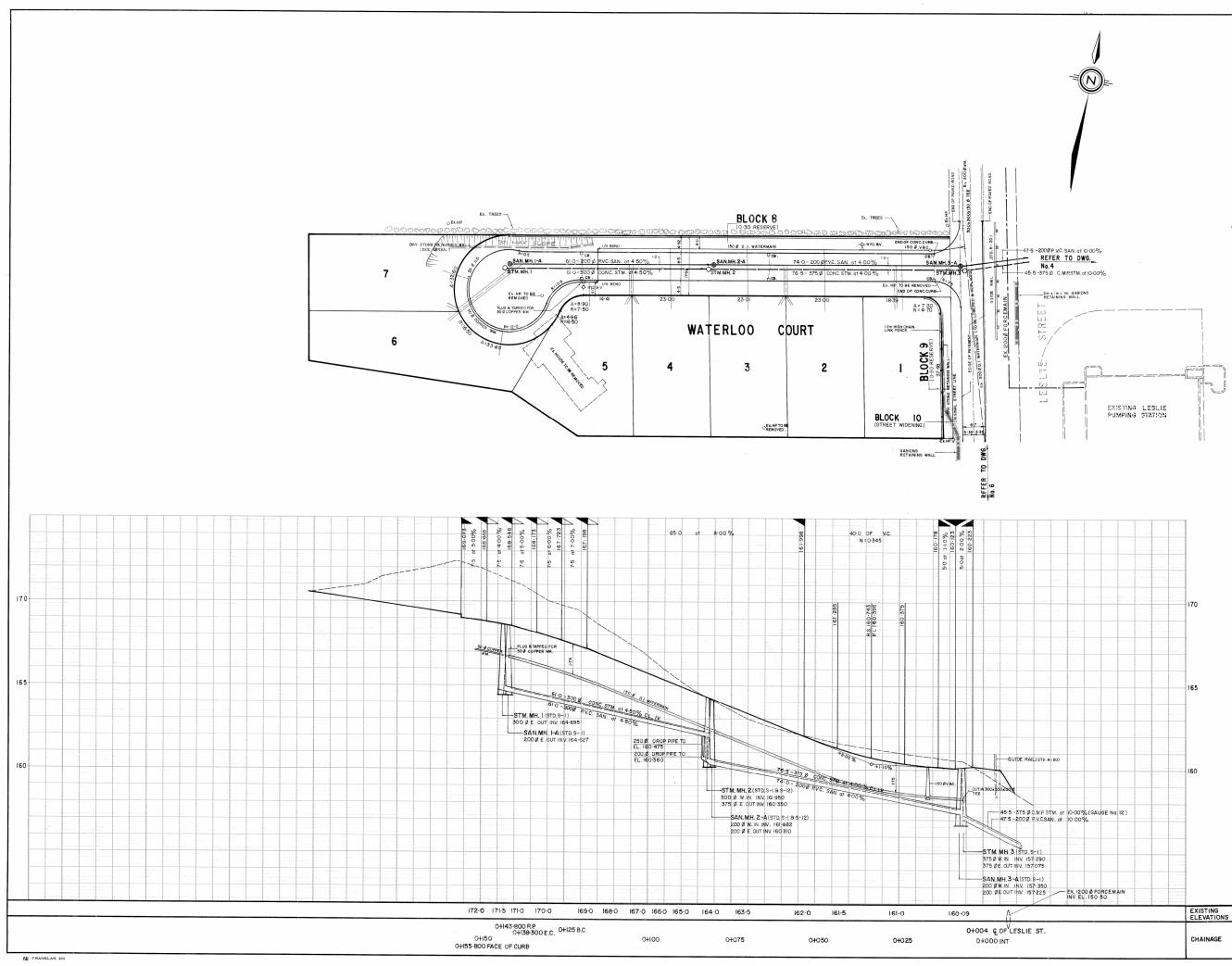




Appendix A Site Plan

Bahá'í National Assembly Leslie Street & Driveway Improvements Lake to Lake Trail Extension


0 10 20 50 100m


SCALE 1:1000

DATE: 2024-01-16 PROJECT NO: 17069

Appendix B Record Drawings and Background Information

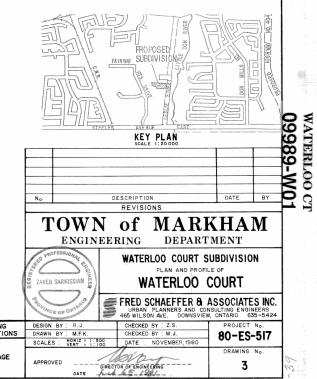
REQUIRED ROAD BASE THICKNESS

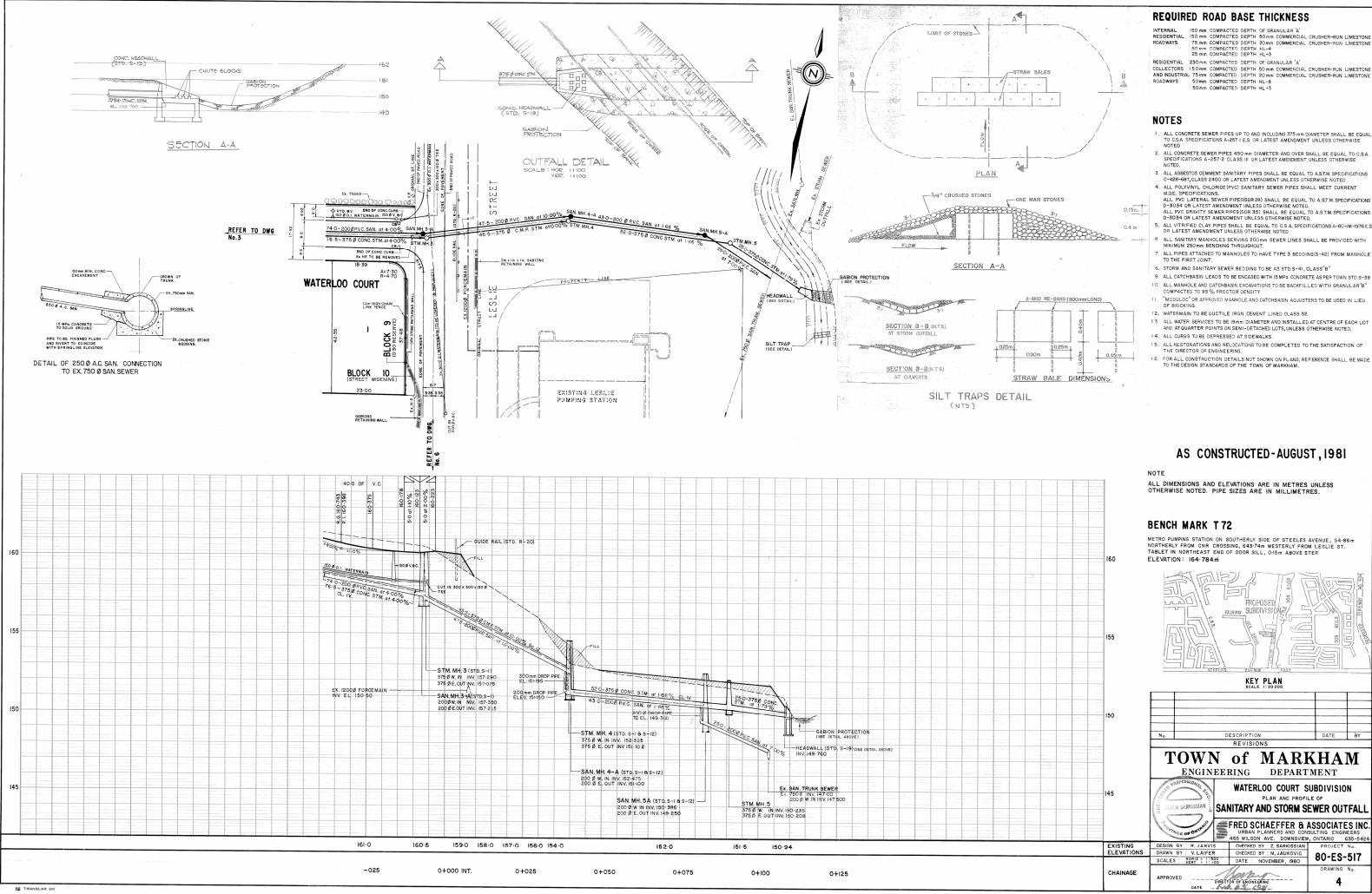
INTERNAL RESIDENTIAL ROADWAYS	150 mm 75 mm 50 mm	COMPACTED	DEPTH DEPTH DEPTH	
RESIDENTIAL				OF GRANULAR 'A'
				50 mm COMMERCIAL CRUSHER-RUN LIMESTONE 20 mm COMMERCIAL CRUSHER-RUN LIMESTONE
ROADWAYS		COMPACTED COMPACTED		

NOTES

- ALL CONCRETE SEWER PIPES UP TO AND INCLUDING 375mm DIAMETER SHALL BE EQUAL TO C.S.A. SPECIFICATIONS A-257-I E.S. OR LATEST AMENDMENT UNLESS OTHERWISE NOTED
- ALL CONCRETE SEWER PIPES 450 mm DIAMETER AND OVER SHALL BE EQUAL TO C.S.A. SPECIFICATIONS A-257-2 CLASS III OR LATEST AMENDMENT UNLESS OTHERWISE NOTED.
- ALL ASBESTOS CEMMENT SANITARY PIPES SHALL BE EQUAL TO A.S.T.M. SPECIFICATIONS C-428-68T, CLASS 2400 OR LATEST AMENDMENT UNLESS OTHERWISE NOTED.
- 4. ALL POLYVINYL CHLORIDE (PVC) SANITARY SEWER PIPES SHALL MEET CURRENT
- ALL POLYUNIL ORLOWIDE/PVC/SANIART SEWER PIPES SHALL MEET CORRENT MOE: SPECIFICATIONS. ALL PVC LATERAL SEWER PIPES(SDR28) SHALL BE EQUAL TO A.S.T.M. SPECIFICATIONS D-5034 OR. LATEST AMENDMENT UNLESS OTHERWISE NOTED. ALL PVC GRAVITY SEWER PIPES(SDR35) SHALL BE EQUAL TO A.S.T.M. SPECIFICATIONS D-5034 OR LATEST AMENDMENT UNLESS OTHERWISE NOTED.
- ALL VITRIFIED CLAY PIPES SHALL BE EQUAL TO C.S.A. SPECIFICATIONS A-60-IM-1976 E OR LATEST AMENDMENT UNLESS OTHERWISE NOTED.
- ALL SANITARY MANHOLES SERVING 200mm SEWER LINES SHALL BE PROVIDED WITH MINIMUM 250mm BENCHING THROUGHOUT.
 ALL PIPES ATTACHED TO MANHOLES TO HAVE TYPE 3 BEDDING(S-42) FROM MANHOLI TO THE FIRST JOINT.
- 8. STORM AND SANITARY SEWER BEDDING TO BE AS STD.S-41, CLASS"B"
- 9. ALL CATCHBASIN LEADS TO BE ENCASED WITH 15 MPd. CONCRETE AS PER TOWN STD.S-39
- ALL MANHOLE AND CATCHBASIN EXCAVATIONS TO BE BACKFILLED WITH GRANULAR"B" COMPACTED TO 95 % PROCTOR DENSITY.
 "MODULOC" OR APPROVED MANHOLE AND CATCHBASIN ADJUSTERS TO BE USED IN LIEU OF BRICKING.
- 12. WATERMAIN TO BE DUCTILE IRON, CEMENT LINED CLASS 52.
- 1.3 ALL WATER SERVICES TO BE 19mm DIAMETER AND INSTALLED AT CENTRE OF EACH LOT AND AT QUARTER POINTS ON SEMI-DETACHED LOTS, UNLESS OTHERWISE NOTED.
- 14. ALL CURBS TO BE DEPRESSED AT SIDEWALKS. 15. ALL RESTORATIONS AND RELOCATIONS TO BE COMPLETED TO THE SATISFACTION OF THE DIRECTOR OF ENGINEERING.
- FOR ALL CONSTRUCTION DETAILS NOT SHOWN ON PLANS, REFERENCE SHALL BE MADE TO THE DESIGN STANDARDS OF THE TOWN OF MARKHAM.

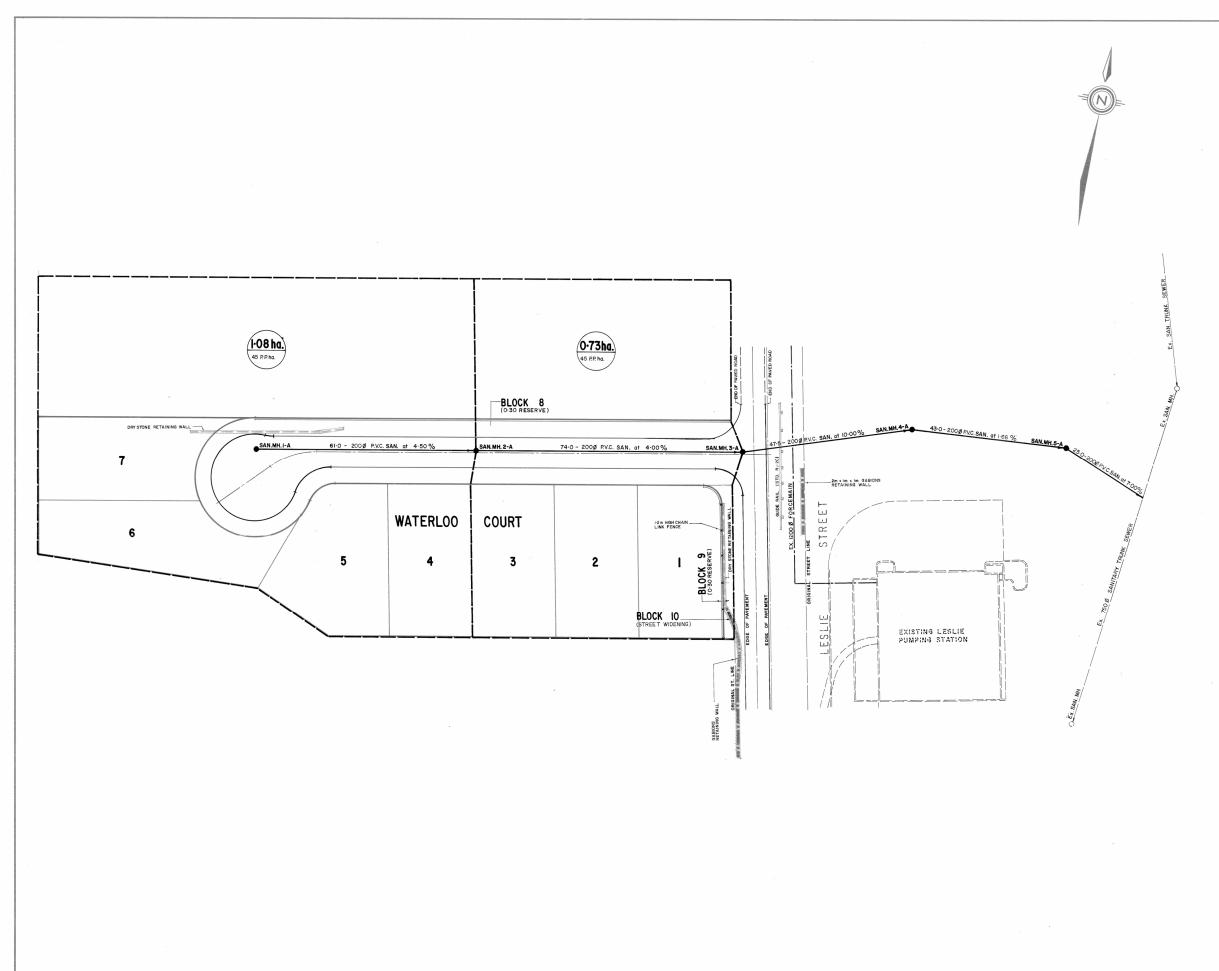
AS CONSTRUCTED-AUGUST, 1981


NOTE

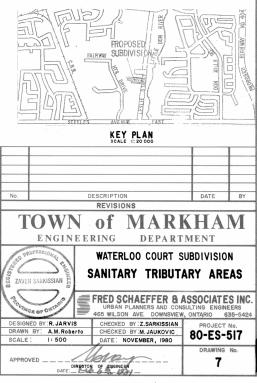

ALL DIMENSIONS AND ELEVATIONS ARE IN METRES UNLESS OTHERWISE NOTED. PIPE SIZES ARE IN MILLIMETRES.

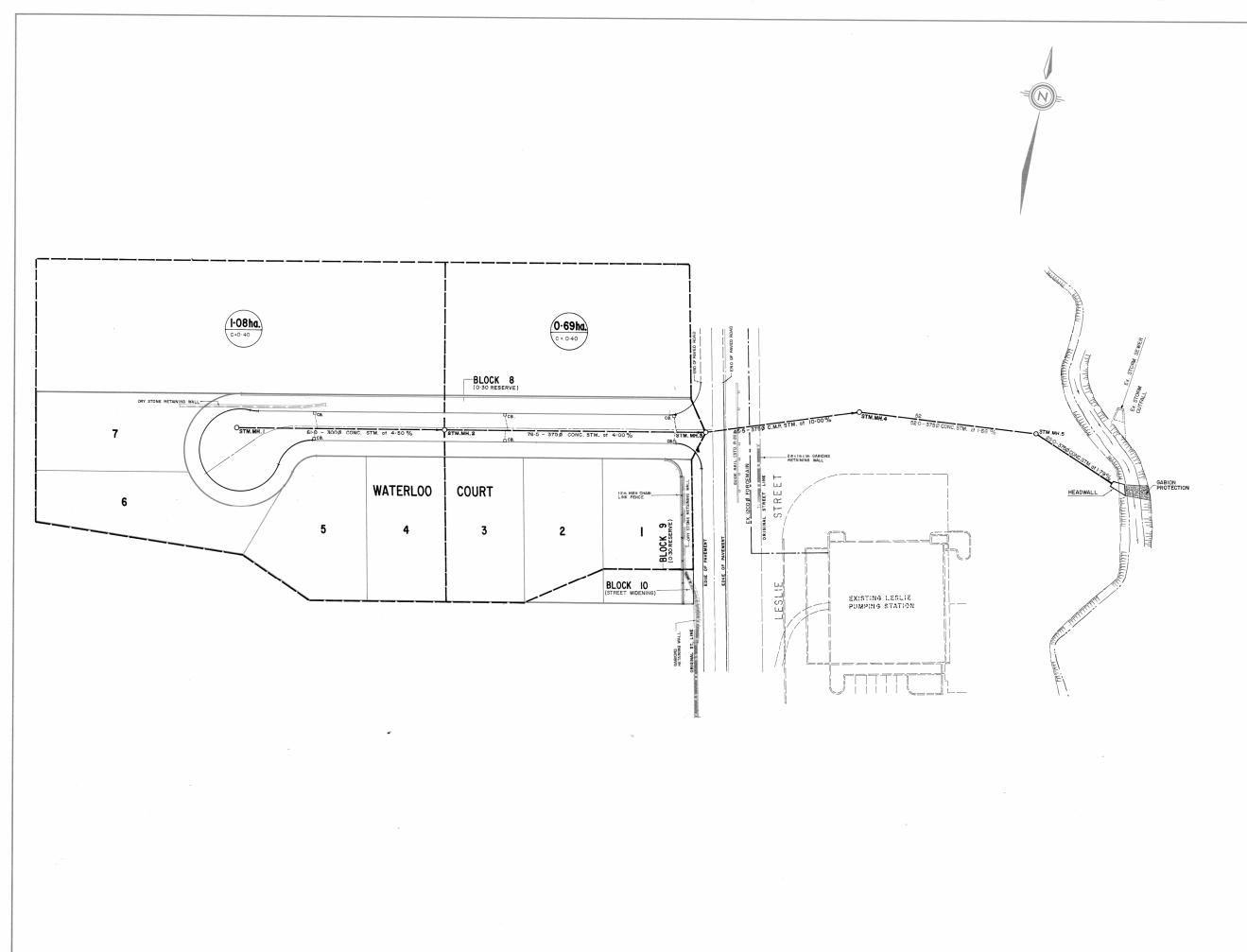
BENCH MARK T 72

METRO PUMPING STATION ON SOUTHERLY SIDE OF STEELES AVENUE, 54-86 m NORTHERLY FROM CNR CROSSING, 643-74 m WESTERLY FROM LESLIE STREET. TABLET IN NORTHEAST END OF DOOR SILL, O15 m ABOVE STEP


ELEVATION : 164-784

				OF GRANULAR 'A' 50mm COMMERCIAL CRUSHER-RUN LIMESTONE
5	50 mm	COMPACTED COMPACTED COMPACTED	DEPTH	
RESIDENTIAL 2	30 m m	COMPACTED	DEPTH	OF GRANULAR 'A'
COLLECTORS 15	50 m m	COMPACTED	DEPTH	50 mm COMMERCIAL CRUSHER-RUN LIMESTONE
AND INDUSTRIAL	75 m m	COMPACTED	DEPTH	20 mm COMMERCIAL CRUSHER-RUN LIMESTONE
ROADWAYS	50 m m	COMPACTED	DEPTH	HL-8
1	50 m m	COMPACTED	DEPTH	HL -3

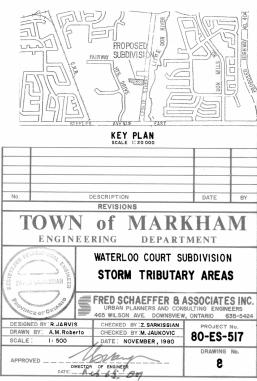

AS CONSTRUCTED-AUGUST, 1981


NOTE

ALL DIMENSIONS AND ELEVATIONS ARE IN METRES UNLESS OTHERWISE NOTED. PIPE SIZES ARE IN MILLIMETRES.

BENCH MARK T72

METRO PUMPING STATION ON SOUTHERLY SIDE OF STEELES AVENUE, 54-86m NORTHERLY FROM CUR CROSSING, 643-74m WESTERLY FROM LESLIE ST. TABLET IN NORTHEAST END OF DOOR SILL, 0-15m ABOVE STEP. ELEVATION: 164-784m


AS CONSTRUCTED-AUGUST, 1981

NOTE

ALL DIMENSIONS AND ELEVATIONS ARE IN METRES UNLESS OTHERWISE NOTED. PIPE SIZES ARE IN MILLIMETRES.

BENCH MARK T72

METRO PUMPING STATION ON SOUTHERLY SIDE OF STEELES AVENUE, 54-86m NORTHERLY FROM CUR CROSSING, 643-74m WESTERLY FROM LESLIE ST. TABLET IN NORTHEAST END OF DOOR SILL, 0-15m ABOVE STEP. ELEVATION: 164-784m

8

Path: Q:\Asset Management\BUSINESS SYSTEMS\dept\ArcMap\MapBooks\SAN_Prnt_2017_wodates.mxd - Date Saved: 08/02/2017 11:38:43 AM

Path: Q:\Asset Management\BUSINESS SYSTEMS\dept\ArcMap\MapBooks\SAN_Prnt_2017_wodates.mxd - Date Saved: 08/02/2017 11:38:43 AM

HYDROGEOLOGICAL STUDY BAHÁ'Í NATIONAL CENTRE SITE 7200 LESLIE STREET THORNHILL, ONTARIO

Prepared for: National Spiritual Assembly of the Bahá'í's of Canada 7200 Leslie Street Thornhill, ON L3T 6L8

Attention: Mr. Mehran Anvari

File No. 1-20-0109-46 Issued: November 7, 2022 Revised : December 19, 2023

© Terraprobe Inc.

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Terraprobe Inc.

Hamilton – NiagaraCentral903 Barton Street, Unit 22220 BayStoney Creek, Ontario L8EBarrie, 0(905) 643-7560 Fax: 643-7559(705) 73www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369 probe.ca **Northern Ontario**

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 water sources may be at risk from quantity or quality threats, to assess the level of risk, and to put in place measures to eliminate or manage the threat.

Based on the review of MECP's Source Protection Information Atlas and Toronto and Region Conservation Authority (TRCA) mapping (Accessed: October 21, 2022), the following information was obtained related to the subject property:

Associated Policy Area	Applicability
Conservation Authority	Toronto and Region Conservation Authority
Source Protection Area	Toronto Source Protection Area
Watershed	Don River Watershed
Subwater Shed	German Mills Creeks – Don River Subwatershed
MECP District	City of Markham
TRCA Regulated Area	Yes
Wellhead Protection Area (WHPA)	No
Significant Groundwater Recharge Area (SGRA).	No
Highly Vulnerable Aquifer (HVA)	Yes ; score is 6 on the western portion of the property
Wellhead Protection Areas	
(WHPA - Q) or Recharge	No
Management Area	
Intake Protection Zone (IPZ)	No
Intake Protection Zone Q (IPZ-Q)	No
Oak Ridges Moraine (ORM)	No
Niagara Escarpment Plan Area	No
Greenbelt Protection Act Area	No

Refer to Appendix A for associated regulatory mapping details.

3.3 Permit to Take Water (PTTW) Section 34 of the Ontario Water Resource Act

The Online MECP PTTW Database was reviewed (Accessed: October 21, 2022) for any active PTTW application records within a 1.0 km radius of the Site. The records review indicates that there is one (1) active PTTW located at a distance of 0.27 km from the Site, and is registered by Bayview Country Club Limited (Permit No.: 4288-BM6Q8S). This water taking is reportedly used for commercial purpose (Golf Course Irrigation).

5.0 RESULTS OF SUBSURFACE INVESTIGATION

The field investigation was conducted on May 24 to 27, 30 & 31, and June 1, 2, 6 and 8, 2022, and consisted of drilling and sampling a total of twenty-six (26) boreholes, extending to depths varying from 2.0 to 17.2 m below grade, as follows:

- Borehole BH1 to BH7 were advanced within a close proximity to the National Centre
- Borehole BH8 to BH10, and BH11 to BH14 were advanced in close proximity to the proposed Visitor Centre and Temple, respectively
- Borehole BH15 was not advanced due to site access limitation
- Boreholes BH16 to BH18 were advanced within close proximity to the proposed heritage building additions and new restroom buildings
- Boreholes BH19 to BH23 were advanced for the proposed parking / pavement areas
- Boreholes BH24 to BH27 were advanced as part of the environmental investigation

The borings were drilled by a specialist drilling contractor using a track/truck-mounted drill rig power auger and mud rotary drilling techniques and sampled at regular intervals with conventional 50 mm diameter split barrel samplers when the Standard Penetration Test (SPT) was carried out (ASTM D 1586). The soil samples were observed and recorded by a member of our field engineering staff, who logged the borings and examined the samples as they were obtained. All samples obtained during the investigation were sealed into plastic jars and transported to our testing laboratory for detailed inspection and testing

The fieldwork (drilling, sampling, and testing) was observed full time and recorded by a Terraprobe filed staff, who logged the boring and examined the samples as they were obtained. To measure the groundwater level and investigate the quality of groundwater, ten (10) boreholes (BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27) were instrumented with monitoring well as a part of the current investigation. The monitoring well consisted of a 50 mm diameter PVC screen with a length of PVC riser pipe, 10-ft slotted screen. Upon installation, an elevation survey of the monitoring wells relative to a local datum was completed so that relative groundwater flow direction can be assessed.

The borehole and monitoring well locations are provided on Figure 2.

5.1 Local Site Setting

Based on the review of the geotechnical report (**File No. 1-20-0109-01**); the subsurface soil stratigraphy encountered during the drilling investigation is summarized in the subsections below.

The stratigraphy is based on the borehole findings, as well as the geotechnical laboratory testing conducted on selected representative soil samples. The stratigraphic boundaries indicated on the Borehole Logs are inferred from non-continuous samples and observations of drilling resistance and typically represent a transition from one soil type to another. These boundaries should not be interpreted to

represent exact planes of geological change. The subsurface conditions have been confirmed in a series of widely spaced boreholes and will vary between and beyond the borehole locations.

5.1.1 Surficial Topsoil/ Earth Fill Material

A surficial layer of asphaltic concrete about 75 mm (thick) was encountered in Boreholes 6 & 7 and was underlain by an aggregate layer of about 115 and 90 mm (thick), respectively.

Topsoil, predominantly consisted of a sandy silt/sand and gravel matrix with organics, with thickness ranging from about 25 to 320 mm was encountered in all other boreholes. Underlying the surficial topsoil, a layer of earth fill was encountered in all boreholes, and extended to a depth of about 0.8 (BH2) and 6.1 m (BH27) below grade. The earth fill material consisted of clayey silt, with some sand and trace gravel on the western portion, and sandy silt with trace to some amounts of clay and trace amounts of gravel on the eastern portion adjacent German Mills Creek floodplain.

5.1.2 Native Soils

Undisturbed native soil deposits underlie the topsoil / earth fill deposits, which extended to the full depth of investigation are as follows:

- Clayey Silt to Silt and Clay Glacial Till: A layer of undisturbed native clayey silt to silt and clay till deposit with variable amounts of sand (some sand to sandy) and trace amounts of gravel was encountered beneath the earth fill/surficial layers in boreholes BH3, BH6 to BH14, and BH23 to BH27 at depths varying from about 0.2 m (BH6) to 6.1 m (BH27) and extended to depths varying from about 2.3 m (BH3) to about 13.7 m (BH4). In boreholes BH4 & BH5 the clayey silt to silt and clay till was encountered underlying native sand and sandy silt to silt and sand till, respectively. Layers of sand were noted in the clayey silt to silt and clay till. The in-situ moisture contents of the clayey silt to silt and clay till samples indicated a moist condition.
- Sandy Silt to Silt and Sand Till: Undisturbed native sandy silt to silt and sand deposit with trace to some clay and trace amount of gravel was encountered in borehole BH5 beneath the earth fill at 1.5 m below grade. A layer of sand interrupts the till deposit from 2.3 m to 4.6 m below grade, the sandy silt to silt and sand till extends from 4.6 m to 9.1 m below grade. The in-situ moisture contents of the sandy silt to silt and sand till samples indicated a moist condition.
- Clayey Silt to Clay and Silt: Undisturbed native clayey silt to clay and silt deposit with trace to some sand and trace amounts of gravel was encountered beneath the clayey silt to silt and clay till layers in boreholes BH4, BH6, BH7, and BH13 at depths varying from about 4.6 m (BH6 & BH13) to 13.7 m (BH4) and extended to depths varying from about 7.6 m (BH6 & BH13) to about 17.1 m (BH4). The in-situ moisture contents of the sandy silt to sand and silt till samples indicated a moist condition.
- Sand: native sand deposit with trace to some silt and trace amounts of clay was encountered beneath the various layers in boreholes BH1 to BH9, BH11 to BH22, and BH27 at depths varying from about 0.8 m (BH19 to BH22) to 9.1 m (BH7) and extended to the full depth of investigation

where encountered, with the exception of boreholes BH4 & BH5 where the sand terminates at 2.3 and 4.6 m below grade, respectively. The in-situ moisture contents of the sandy silt to sand and silt till samples indicated a moist to wet condition.

The detailed stratigraphic conditions are presented on the accompanying borehole logs provided in **Appendix C**. A subsurface profile of the Site is provided in **Figure 5**. Characterization of the various soil types, including grain size analysis, was conducted and is presented in **Appendix D**. Additional information pertaining to soil stratigraphy is discussed in the geotechnical report by Terraprobe under a separate cover (**File No. 1-20-0109-01**).

5.2 Monitoring Well Installation

Monitoring wells were installed in ten (10) boreholes (BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27) to allow for collection of the groundwater level and to investigate the groundwater quality. The monitoring wells were constructed using 50-mm diameter PVC riser pipes and screens, which were installed in each of the selected geotechnical boreholes in accordance with Ontario Regulation (O. Reg.) 903. Filter sand was placed around the well screen to approximately 0.6 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below the ground surface. All monitoring wells were surveyed using an R10 Trimble GPS relative to a geodetic datum. The details are provided below:

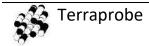
	Well	Ground Top of Screen		f Screen	Bottom	of Screen	Screened Geological
Well ID	Diameter (mm)	Elevation (masl)	Depth (mbgs)	Elev. (masl)	Depth (mbgs)	Elev. (masl)	Units (Native)
BH3	50	163.69	10.67	153.02	13.72	149.97	Sand
BH4	50	172.33	6.1	166.24	9.14	163.19	Clayey Silt (Till)
BH8	50	175.81	4.57	171.23	7.62	168.19	Sand
BH11	50	176.60	5.79	170.81	8.84	167.76	Sand
BH 14	50	179.10	6.1	173	9.14	169.96	Sand
BH18	50	157.11	4.57	152.54	7.62	149.49	Sand
BH24	50	177.10	3.05	174.05	6.1	171	Clayey Silt (Till)
BH25	50	186.69	6.1	180.6	9.14	177.55	Clayey Silt (Till)
BH26	50	186.74	6.1	180.64	9.14	177.6	Clayey Silt (Till)
BH27	50	185.33	6.1	179.23	9.14	176.18	Sand

Note: masl: meters above sea level, mbgs: meters below ground surface

Additional details of the monitoring well installation is presented on the enclosed borehole logs provided in **Appendix C**.

5.3 Groundwater Monitoring

The groundwater elevations were monitored in all ten (10) monitoring wells ((BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27). A groundwater measurement was collected on June 22, 2022 (after the well development-stabilized water levels). The groundwater elevations in the monitoring wells are provided below:


		June 2	2, 2022
Well ID	Ground Surface Elevation (masl)	Groundwater Depth (mbgs)	Groundwater Elevation (masl)
BH3	163.7	10.7	153.0
BH4	172.3	6.1	166.3
BH8	175.8	3.1	172.8
BH11	176.6	Dry	Dry
BH 14	179.1	Dry	Dry
BH18	157.1	4.8	152.3
BH24	177.1	Dry	Dry
BH25	186.7	7.7	179.0
BH26	186.7	7.3	179.5
BH27	185.3	Dry	Dry

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the above groundwater level recordings, it is noted that groundwater level at the site varies from $179.47 \pm \text{masl}$ to $152.3 \pm \text{masl}$ across the property. Yearly groundwater monitoring was initiated on site as per TRCA requirements on July 14, 2023.Groundwater levels monitored until November are attached as **Appendix I**.

The regional and local groundwater flow direction in the overburden appears to be east and southeast towards German Mills Creek tributary and corresponds to the local topography of the Site. The local groundwater flow direction may fluctuate seasonally depending on the magnitude of precipitation and surface runoff, which will affect infiltration of surface water in particular at times such as significant snowmelt and rainfall events. In order to capture the seasonal groundwater fluctuations and flow patterns at the Site, additional groundwater monitoring is required. The groundwater elevations contour and flow direction map is provided on **Figure 4**.

The monitoring wells installed at the Site need to be maintained in accordance with Ontario Water Resources Act, O. Reg. 903/90. When the wells are no longer required for monitoring or sampling, these wells will need to be appropriately decommissioned by a licensed well contractor as outlined in the Regulation.

5.4 Estimation of Hydraulic Conductivity

5.4.1 Estimation from Grain Size Distribution

In order to estimate the hydraulic conductivity (K) from the grain size distribution curves an excel based tool/program HydrogeoSieveXL (Devlin, J.F. 2015) is used that calculates the hydraulic conductivity from grain size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves. This program is developed by J.F Devlin, Department of Geology, University of Kansas (Developed April 29, 2014, most recent update September, 2016). HydrogeoSieveXL presents the completed data table, a grain size distribution curve, an extensive list of grain size characteristics from which effective grain diameters are calculated, a histogram of grain size distribution presented in terms of conventional grain size classes and 15 estimates of K calculated from the formulas. Geometric and arithmetic means of the estimated K values are also calculated. The complete report for each sample is provided in along with the grain size results in **Appendix D**. The results of the estimates are summarized below:

Borehole No./Sample ID	Sampling Depth (mbgs)	Sampling Elevation (masl)	Soil Description (Native)	Estimated Hydraulic Conductivity (m/s) (Geometric Mean)
Borehole 2, Sample 3	1.8	159	SAND, trace silt, trace clay	1.9 x 10 ⁻⁵
Borehole 4, Sample 6	4.8	167.5	CLAYEY SILT TILL, sandy, trace gravel	2.2 x 10 ⁻⁹
Borehole 5, Sample 8	7.7	165.2	SILT AND SAND TILL, trace to some clay, trace gravel	6.3 x 10 ⁻⁹
Borehole 9, Sample 5	3.3	172.7	SILT AND CLAY TILL, some sand, trace gravel	1.4 x 10 ⁻⁹
Borehole 11, Sample 11	12.3	164.3	SAND, trace to some silt, trace clay	5.4 x 10 ⁻⁶
Borehole 13, Sample 6	4.8	173.3	CLAY AND SILT, trace sand	8.9 x 10 ⁻¹⁰

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the grain size distribution analysis, the hydraulic conductivity of the cohesionless sand deposit is estimated in order of 10^{-5} to 10^{-6} m/s. Moreover, the hydraulic conductivity of the silt and clay glacial till is estimated in order ranging from 10^{-9} m/s to 10^{-10} m/s.

5.4.2 Estimation from In-situ Hydraulic Testing

The hydraulic conductivity was also determined based on single well response tests (Bail Tests), as per the hydrogeological investigation completed on all selected three (3) monitoring wells (BH3, BH4 and

BH8). The monitoring wells were developed in advance of the testing event, which involves the purging and removal of groundwater from the monitoring wells to remove remnants of clay, silt and other debris introduced into the monitoring well during construction and to induce the flow of formation groundwater through the well screens, thereby improving the transmissivity of the subsoil strata formation at the well screen depths. The Solinst Dataloggers (pressure transducers) were programmed to record the water levels at one (1) second of the interval throughout the tests. The data from the tests were analyzed using the Bouwer and Rice method (1976) included in the Aquifer Test v.7 software package. The results of the analysis are presented in **Appendix E**. The hydraulic properties of the strata applicable to the Site are as follows:

Monitoring Well ID	Top of Well Screen Elevation (masl)	Bottom of Well Screen Elevation (masl)	Screened Geological Units	Hydraulic Conductivity (m/s)
BH3	153.02	149.97	SAND, trace to some silt, trace clay	8.2 x 10 ⁻⁶
BH4	166.24	163.19	SILT AND CLAY, sandy, trace gravel (Till)	7.0 x 10 ⁻⁹
BH8	171.23	168.19	SILT AND CLAY, sandy, trace gravel (Till)	5.6 x 10 ⁻⁸

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the single well response tests, the hydraulic conductivity of the native sand is estimated in order of 10^{-6} m/s and the glacial till in order ranging from 10^{-8} to 10^{-9} m/s.

5.4.3 Estimation from Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Soil Unit	Estimated Hydraulic Conductivity Range (m/s)
Earth Fill	10-6
Sand	10 ⁻² - 10 ⁻⁵
Silt and Clay Glacial Till (Native)	10-6 - 10-12

Based on the analyses, the hydraulic conductivity calculated from the single well response testing and grain size analyses are consistent with the published values associated with the geological material tested.

5.5 Groundwater Quality

One (1) unfiltered groundwater sample was collected by Terraprobe and analyzed by a Canadian laboratory accredited and licensed by the Standards Council of Canada and or Canadian Association for Laboratory Accreditation. The sample was collected directly from monitoring well BH4 on February 24,

Toronto and Region Source Protection Authority (TRSPA) Water Balance Tool (Accessed: September 27, 2022), the mean annual **precipitation** is considered as 861 mm/yr. The mean annual **actual evapotranspiration** is considered as 564 mm/yr. using Thornthwaite and Matther approach.

The volume of surplus water, i.e. 861 mm/yr. - 564 mm/yr.= 297 mm/yr., that infiltrates into the soil was determined by applying an infiltration factor to the surplus volume based on topography, soil type and land cover as per Table 3.1, MOE SWMPD Manual (2003). Based on the Table 3.1 approach, the infiltration factor is estimated as 0.5, considering the topography as hilly topography (0.1), silt loam (0.2) and cover as mature forest (0.2). The infiltration factors for the post-development conditions were considered the same as the pre-development conditions.

Based on the above information, a conceptual model of groundwater flow and water balance was developed. A water balance was conducted for the post-development conditions for the entire Site, using the proposed land use statistics information and property development plan provided in the client's email dated September 19, 2022. The post-development water balance accounts for hard-surfaced areas created by buildings and pavements. The post-development conditions will result in a surplus of water available from run-off. The surplus of water available from roof runoff can be used for infiltration into the shallow groundwater system.

The following assumptions were applied for the pre-and post-development water balance:

- No infiltration will occur beneath the hard surface areas, including asphalt/concrete surfaced parking areas and walkways or driveways.
- It is assumed that there will be 10% of evaporation in hard-surface areas/impervious surfaces, and the remaining will contribute to run-off.
- Run-off from parking areas will be directed towards storm sewers and is not included in the infiltration calculations.
- Infiltration rates in open areas of the property (landscaped areas) will occur at rates similar to those for pre-development conditions.
- There will be no infiltration beneath hard-surface areas including, building, pavements, and walkways.

6.1.2 Water Balance Analysis:

Based on the Climate data, annual precipitation of 861 mm/yr., is considered and actual evapotranspiration of 564 mm/yr. There is a water surplus of 297 mm/yr., occurring at the Site that can either infiltrate into the subsurface or go as a run-off. As indicated above, the rate of infiltration was based on the Table 3.1, MOE SWMPD Manual (2003) and is considered as 149 mm/yr. The water balance for pre-development conditions for the entire Site is summarized in the Table below:

Summary of Site Statistics (Pre-development)

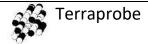
	Land Use	Area (ha)	Area (m²)
--	----------	-----------	-----------

Land Use	Area (ha)	Area (m²)
Building Footprint/Envelope	0.108	1,076.9
Hardscape/Impervious	0.243	2,427.0
Softscape/Pervious (Undeveloped Area)	8.119	81,192.9
Total	8.47	84,696.8

Pre- Development Water Balance (Entire Site)

	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
Proposed Development	84,696.8	72,924	45,793	302	12,057	14,772

Development of an area affects the natural water balance of the Site. The most significant difference is the addition of impervious surfaces as a type of surface cover. Impervious surfaces prevent the infiltration of water into the soils. Net effect of the construction of impervious surfaces is that most of the precipitation that falls onto the impervious surfaces becomes surplus water and direct runoff. The natural permeability of the ground surface changes by reducing the currently undeveloped land/ open space and vegetation at the Site and replacing part of these areas with less permeable/ impervious surfaces such as building roofs, roads, and driveways. The development will result in an increased volume of runoff and a reduction in infiltration. Pre-development conditions result in approximately 12,057 m³ of water available for infiltration to the groundwater system, as mentioned in the above table.


Based on the post-development plan, a summary of proposed land use and water balance calculations for the post-development are provided below:

Summary of Site Statistics (Post-development)

Land Use	Area (ha)	Area (m²)
Building Footprint/Envelope	0.445	4,447
Hardscape/Impervious	0.657	6,570
Softscape/Pervious (Undeveloped Area)	7.368	73,679.8
Total	8.47	84,696.8

Post- Development Water Balance without Mitigation (Entire Site)

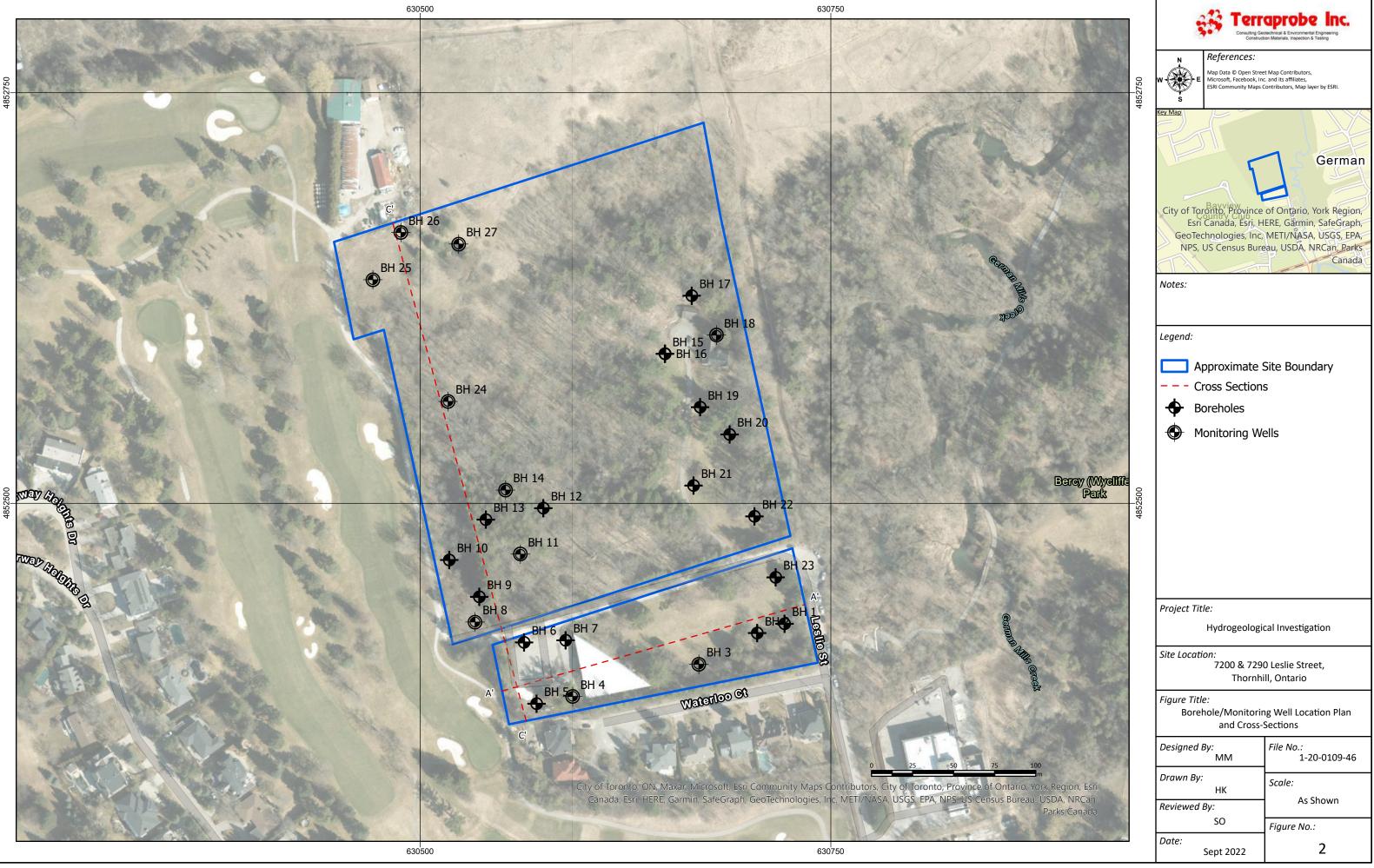
	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
--	---------------------------	------------------------------------	---	-------------------------------	-----------------------------------	------------------------------

Proposed Development	84,696.8	72,924	41,555	949	10,941	19,479
-------------------------	----------	--------	--------	-----	--------	--------

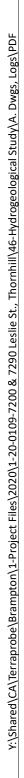
In the post-development, the water balance calculations show that development has the potential to reduce the natural infiltration by 1,116 m³/yr, and to increase the runoff by 4,706 m³/yr. Conservation Ontario Guidelines (Conservation Ontario, 2013) suggest a target of 80% of the predevelopment infiltration being maintained in the post-development conditions. Calculations for the Site are indicative of the post-development infiltration being at a level of about 91 % of the pre-development infiltration. As such, post-development infiltration exceeds Conservation Ontario required target to maintain 80% of the predevelopment infiltration in the post-development conditions.

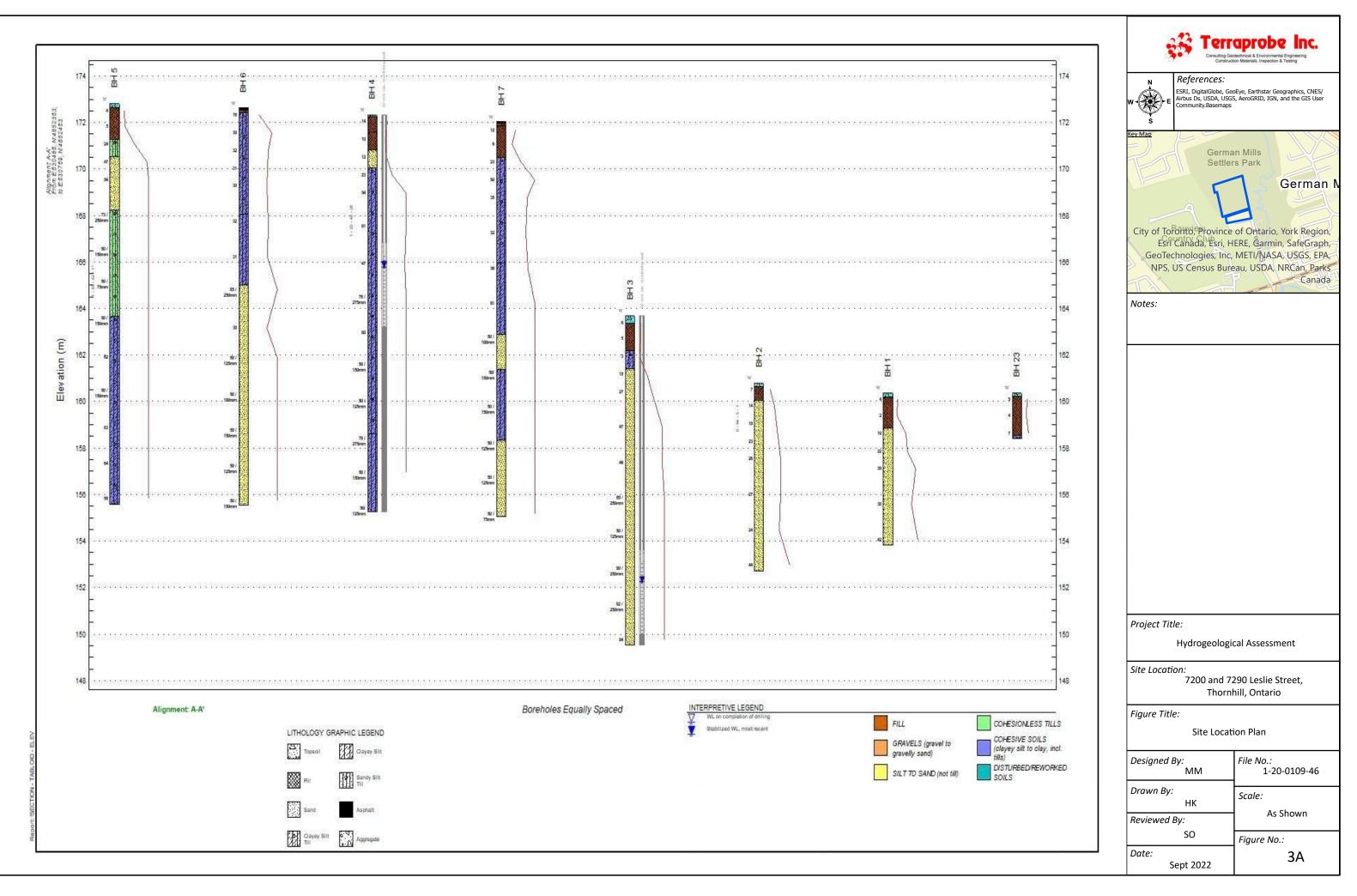
The water balance calculations are provided in **Appendix G**.

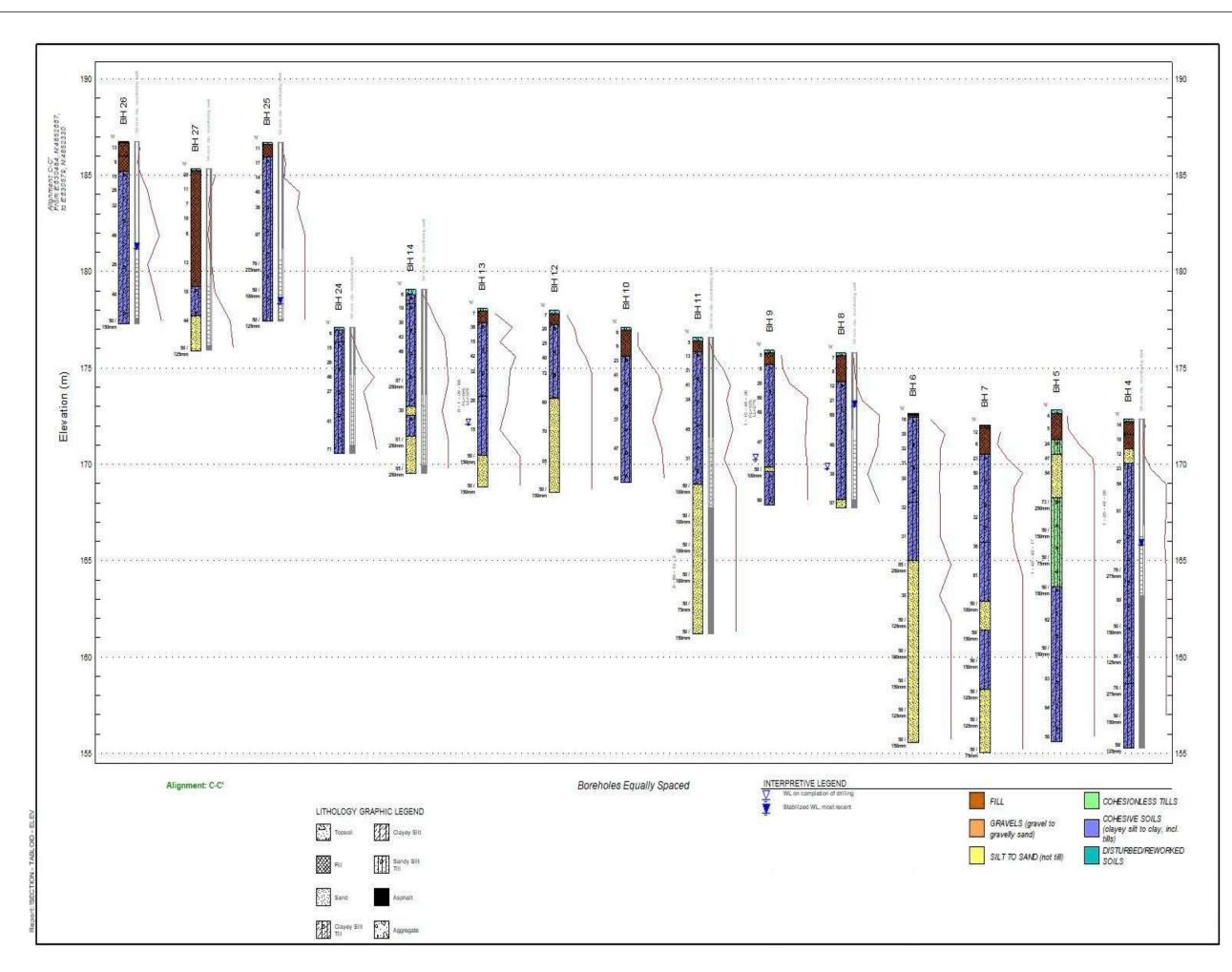
6.2 Groundwater Control and Dewatering Requirements

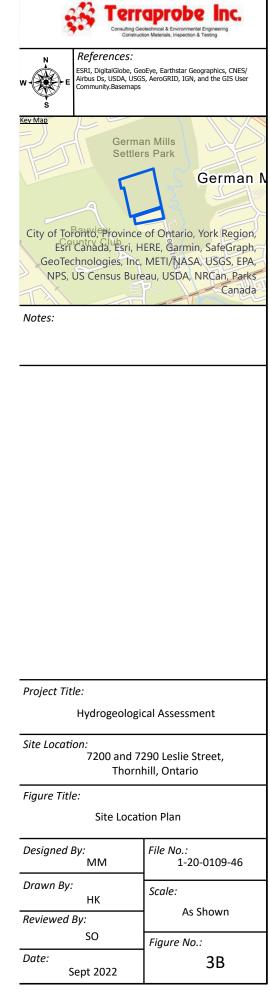

6.2.1 Construction Requirements and Methodology

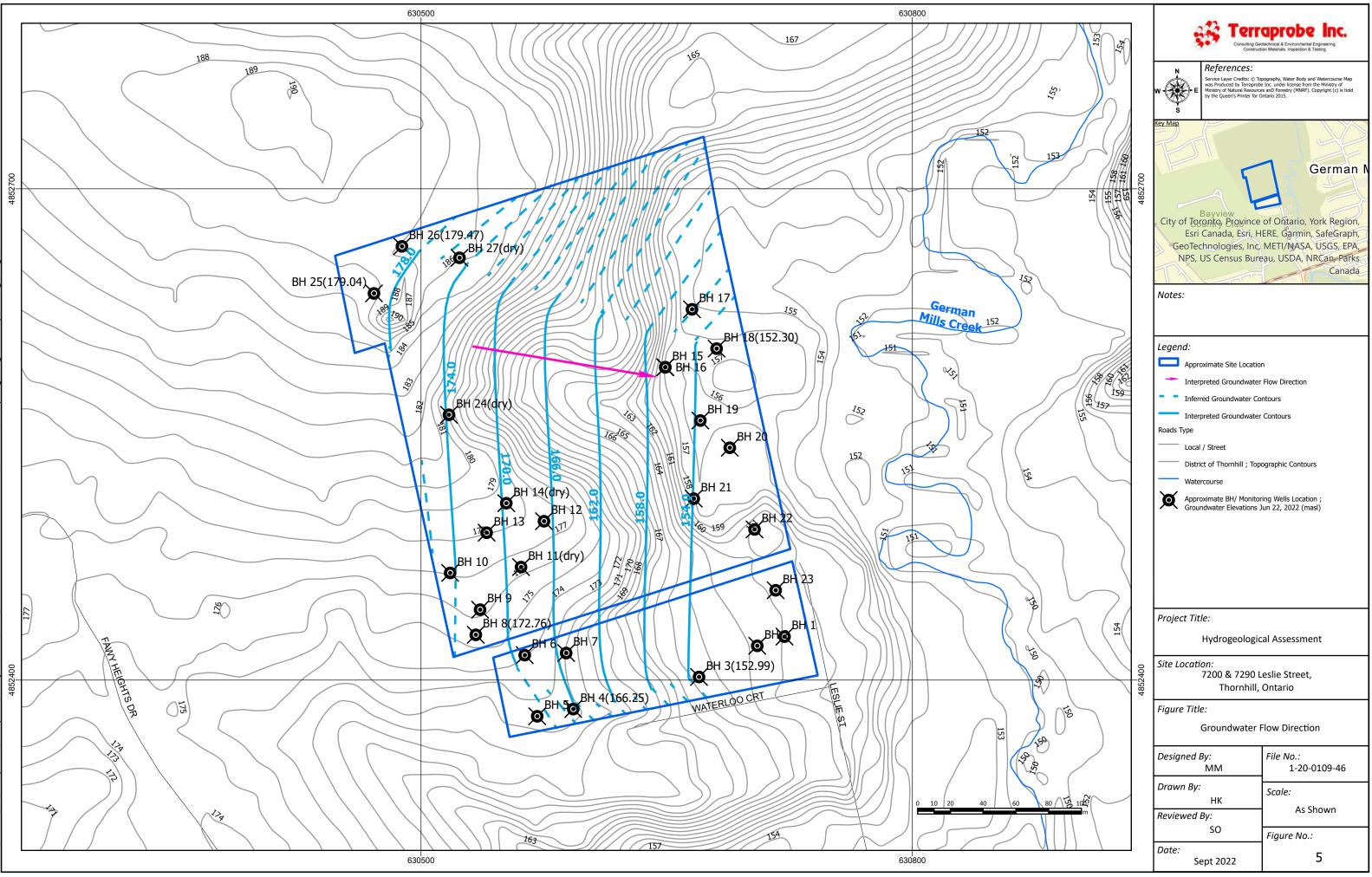
Based on the architectural drawing set ((Master Plan, Project: Bahá'í National Centre and Temple 7200 Leslie St. Thornhill; Project No. 1709) dated September 15, 2022 prepared by Hariri Pontarini Architects, it is proposed to demolish the existing houses and construct a new one to three-storey House of Worship (Temple), a one to two-storey Visitor Centre and a one to three-storey National Centre and 3 level of underground parking structure, and relocation of Heritage Building. According to the elevation drawings number A3.00 to A3.03, it is indicated that the finished ground floor level is set at 173.5 \pm m, and the finished floor levels of the underground parking garage P1, P2 and P3 are set at depths of about 4.5 mbgl (Elev. 161.5 \pm m), 8.0 mbgl (Elev. 165.0 \pm m) and 11.5 mbgl (Elev. 161.5 \pm m) respectively. The spread footing foundations for the lowest level (P3) will likely be set at about 1.0 m below lowest FFE, i.e., Elev. 160.5 \pm m and below the prevailing groundwater table.

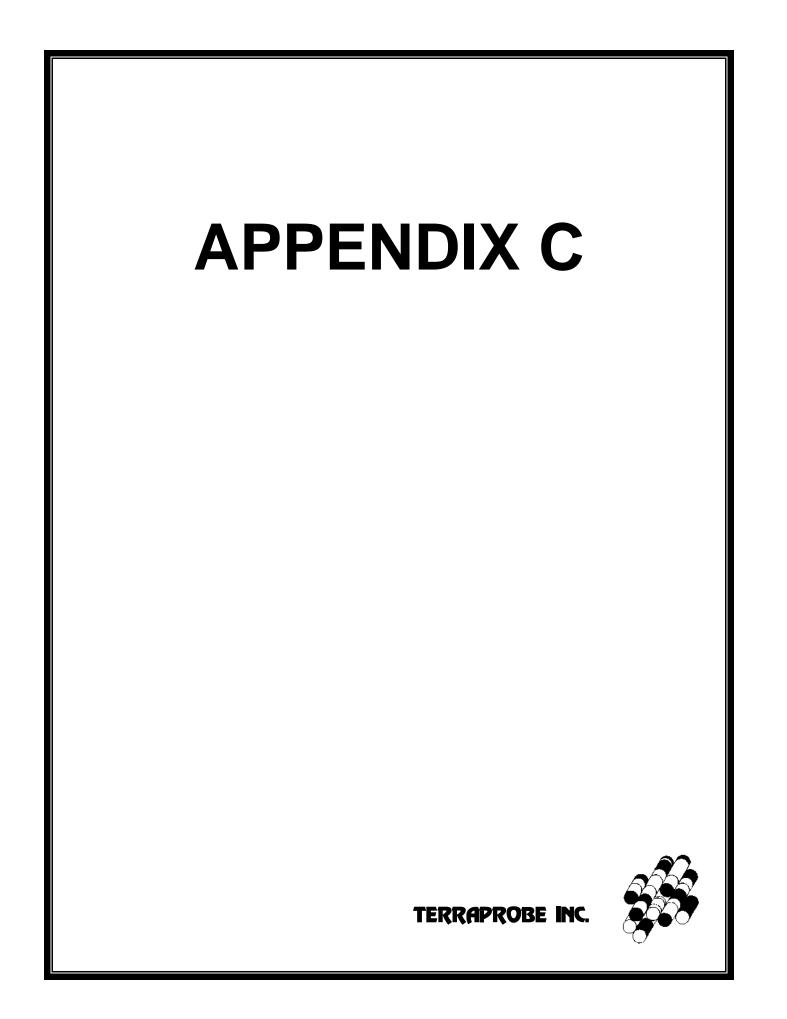

Based on the review of the geotechnical investigation report prepared by Terraprobe File No. 1-20-0109-01, the conventional spread footings are made to bear on the drained dense to very dense sands or glacial till below Elev. $160.5 \pm m$. The foundation excavations will partially extend below the prevailing groundwater table for P3 basement levels. Foundation excavations will penetrate through upper cohesive silt and clay till and dense to very dense sand. The sand deposit will yield free-flowing water when penetrated. The groundwater table must be dewatered to a minimum of 1.2 m below the deepest excavation prior to excavation to preserve the in-situ integrity of the native soils.


Based on the above groundwater level recordings, it is noted that groundwater level varies from $179.47 \pm$ masl to $152.3 \pm$ masl in the glacial till and the sand deposit across the property. Based on the shallow groundwater flow elevations pattern across the Property, the design ground water level within the Bahá'í National Centre (BNC) building is considered at Elev. $172.76 \pm$ m on the western boundary and $152.99 \pm$ m on the eastern boundary.


The native wet and cohesionless sand/silt deposits must be dewatered to a minimum of 1.0 m below the lowest excavation level prior to commencing the excavation work and maintained at that level throughout


Dwgs, Logs/PDF Studv\A. 46-H -nhill\. f Files\2020\1-20-0109-7200 & 7290 Leslie St. on/1 obe/Br CA\Tei





Y:\Shared\CA\Terraprobe\Brampton\1-Project Files\2020\1-20-0109-7200 & 7290 Leslie St., Thornhill\46-Hydrogeological Study\A. Dwgs, Logs\PDF

	🖇 Т	erraprobe											L	.0G () F	BO	REH	IOLE 1
Proj	ect No.	: 1-20-0109-01	Clie	nt	: N	lation	al Spir	itual A	Assen	nbly c	of the	Baha	'i of Ca	nada			Origin	ated by:DH
Date	e started	: May 24, 2022	Proj	ect	: 7	200 8	& 7290	Lesli	e Stre	eet, B	aha'i	Natio	nal Ce	ntre			Com	piled by:HR
She	et No.	:1 of 1	Loca	atio	n : T	hornh	nill, On	ario									Cheo	cked by:MMT
		630722, N: 4852427 (UTM 17T)			l	Elevati	on Datu	m : G	Geodet	ic								
Rig t	vpe : Tra	ack-mounted					Method			em au	•							
Depth Scale (m)	<u>Elev</u> Depth (m)	SOIL PROFILE	Graphic Log	Number	SAMPI Lype	SPT 'N' Value	Elevation Scale (m)	(Blows X Dy 1 Undrai O L ● F	/ 0.3m) mamic Co I <u>0</u> 2 ined She Inconfined Pocket Per	20 ear Stren t netromete	3 <u>0</u> gth (kPa + Fie r ■ La	eld Vane Ib Vane	Hoi Plastic Limit PL 1.0	Sture / Plasticit Natural Water Content MC LL 20 30	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments grave restring to the set of the
-0	160.2 175	ROUND SURFACE	<u>× 1/2</u>			0		-			20 1	60	10	20 30	,			GR SA SI CL
-		L, silty sand, trace gravel, trace clay, y loose, dark brown to brown, moist		1	SS	4	160 -						0			_PID: 0 . FID: 0		
- 1				2	SS	2		K					0			PID: 0 FID: 0		
	158.9						159 -											
-2	^{1.5} SA	ND , trace to some silt, trace clay, npact to dense, brown, moist		3	SS	19							0			_PID: 0 FID: 0		
-				4	SS	22	158 -									_PID: 0 FID: 0		
-3				5	SS	38	157 -				\mathbb{N}		0			_PID: 0 FID: 0		
-4								-										
-				6	SS	30	156 -						0			_PID: 0 FID: 0		
-5							155 -				$\mathbf{\Lambda}$							
- -6																		
-	153.8 6.6			7	SS	42	154 -					\	0			_PID: 0 FID: 0		

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

	Ferraprobe
--	-------------------

LOG OF BOREHOLE 2

Proj	ect N	o. : 1-20-0109-01	Clie	nt	: N	lation	al Spiri	tual As	ssem	bly c	of the	Baha	'i of C	anad	а			Origin	ated by :DH
Date	e star	ted : June 8, 2022	Proj	ject	: 7	200 8	k 7290	Leslie	Stre	et, B	aha'i	Natio	nal C	entre					piled by :HR
Shee	et No	. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario										Che	cked by:MMT
Positi Rig ty		E: 630705, N: 4852421 (UTM 17T) Track-mounted					on Datur Method		eodetio		gers								
(L		SOIL PROFILE			SAMP		<u>e</u>	Penetrat (Blows /	tion Tes 0.3m)	t Value	s		м	oistura	/ Plastic	itv	e	t	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 160.8	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dyna 1,0 Undraine O Une	amic Con 0 2(ed Shea confined cket Pene	e) 3 ar Stren etromete	3 <u>0</u> 4 lgth (kPa + Fie r ∎ Lal	eld Vane	Plasti Limit	c Ni Wate	atural r Content MC L 20 3	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-0	160.6 0.2	165mm TOPSOIL	-/ <u>13 1/</u> -/ XXXX	,													PID: 0		
-	160.0	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm, dark brown, moist		1	SS	7	-							0			FID: 0		<u>SS1 Analysis:</u> M&I, PAH, PCB
-1	0.8	SAND, trace to some silt, trace clay, compact to dense, brown, moist		2	SS	14	160 -						0				_PID: 0 FID: 0		
-				<u> </u>															
-2				3	SS	19	159 -						0				_PID: 0 FID: 0		0 94 5 1
				<u>.</u>			-												
-				4	SS	23						0	₽				PID: 0 FID: 0		
-3							158 -												
-				5	SS	26	-					0	þ				PID: 0 FID: 0		
							157 -												
- 4																			
-				<u> </u>															
-5				6	SS	27	156 -						0				_PID: 0 FID: 0		
-							-												
-6							155 -									[
				7	SS	24	-						0				PID: 0 FID: 0		
							154			<u>\</u>									
-7							10-1				\backslash								
							-				$ \rangle$								
_ 。	152 7			8	SS	44	153 -					<u>\</u>		0			PID: 0 FID: 0		
-8	152.7 8.1			4			I												

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

file: 1-20-0109-01 bh logs.gpj

Proj	ect N	o. : 1-20-0109-01	Client	: N	Vation	al Spir	tual Assemt	oly of	the Baha	a'i of C	Canada	a		Origir	nated by:IH
Date	e star	ted : June 2, 2022	Projec	t:7	7200 8	k 7290	Leslie Stree	et, Bal	ha'i Nati	onal C	entre			Com	piled by :HF
She	et No	. :1 of 2	Locatio	on : T	Thornh		Che	ecked by : MN							
Positi	ion :	E: 630670, N: 4852402 (UTM 17T)					n : Geodetic								
Rig ty	/pe :	Track-mounted				Method	: Solid ster	-	ers / mud r	otary w	ith casir	ng			-
E)		SOIL PROFILE		SAMP		ae	Penetration Test (Blows / 0.3m)	Values	2_	N	loisture /	Plasticity	a -	ent	Lab Data হ ল and
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone 10 20 Undrained Shear O Unconfined Pocket Penet	-	4 <u>0</u> h (kPa) ✦ Field Vane ■ Lab Vane		Water	Content Li	Headspace Vapour (ppm)	Instrument Details	Commen Commen GRAIN SIZ DISTRIBUTION (MIT)
0	163.7	GROUND SURFACE 320mm TOPSOIL	<u> </u>			ш.	40 80	120	160			0 30	_PID: 0		GR SA S
	163.4 0.3	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm, dark brown, moist		SS	6	163 -					0		FID: 0		
I	162.2		2	SS	5							0	_PID: 0 _FID: 0		
2	1.5	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, stiff, brown, moist (GLACIAL TILL)	3	SS	3	162 -						0	PID: 0 _FID: 0		
	161.4 2.3	SAND, trace to some silt, trace clay, compact to very dense, brown, moist	4	SS	18	161 -					0		_PID: 0 _FID: 0		
;			5	SS	27					0			_PID: 0 FID: 0		
						160 -									
						159 -							_PID: 0		
5			6	SS	47					0			FID: 0		
6						158 -							_		
			7	SS	46						0		_PID: 0 FID: 0		
7						157 -									
			8	SS	89 / 250mm	156 -					0		PID: 0 FID: 0		
•						455									
)			9	SS	50 / 125mm	155 -					0		_PID: 0 _FID: 0		
0					_125mm	154 -									
						- 153 -									
11			10	SS	90 / 250mm							C	_PID: 0 _FID: 0		
11						152 -									
		wet below	11	SS	92 / 250mm					1	0		_PID: 0 FID: 0		·]

,	: 1-20-0109-01			piritual Assembly of the Baha'			0		y:IH
Date started	: June 2, 2022	Project	: 7200 & 72	290 Leslie Street, Baha'i Nation		Comp	biled b	y : HR	
Sheet No.	: 2 of 2	Location	: Thornhill,	Ontario		Chec	ked b	y∶MM⊺	
Position : E: 6	30670, N: 4852402 (UTM 17T)		Elevation D						
Rig type : Trac	pe : Track-mounted Drilling Method : Solid stem augers / mud rotary with casing								
		64		Penetration Test Values					

Ξ.		SOIL PROFILE			SAMPL	ES .	ale	(Blows	1001100	st value:	, <u> </u>		Moie	sture / Plastic	oitu	e	÷	Lab Data
Depth Scale (n	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	X Dyr 1 Undrair O Ur	namic Con 0 2 ned Shea nconfined ocket Pen	e <u>03</u> ar Streng etrometer	0 4 gth (kPa + Fie ■ Lat	eld Vane	Plastic	Natural Water Content	Liquid	Headspac Vapour (ppm)	Instrument Details	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 13 -		SAND, trace to some silt, trace clay, compact to very dense, brown, moist (continued)					151											
- 14	149.5			12	SS	84								0		_PID: 0 FID: 0	_	
	14.2																	

 WATER LEVEL READINGS

 Date
 Water Depth (m)
 Elevation (m)

 Jun 23, 2022
 11.5
 152.2

END OF BOREHOLE

Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.

50 mm dia. monitoring well installed.

Proj	ect N	lo. : 1-20-0109-01	Client	: 1	Vation	al Spir	tual Assembly of the Baha	a'i of Canada	(Origir	ated by :DH
Date	e star	ted : June 2, 2022	Projec	t :7	7200 8	& 7290	Leslie Street, Baha'i Natio	onal Centre		Com	piled by:HR
She	et No	o. :1 of 2	Locati	on : T	Thornh	nill, Ont	ario			Che	cked by:MM
Posit		: E: 630593, N: 4852382 (UTM 17T)					n : Geodetic				
	/pe	: Track-mounted SOIL PROFILE		SAMF			: Solid stem augers / mud re Penetration Test Values				Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log Number		SPT 'N' Value	Elevation Scale (m)	(Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined ● Pocket Penetrometer ■ Lab Vane	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL	Headspace Vapour (ppm)	Instrument Details	and para para para para para Comments GRAIN SIZE DISTRIBUTION (? (MIT)
0	172.3	GROUND SURFACE	/****		5	ш	40 80 120 160	10 20 30	PID: 0		GR SA SI (
	<u>171.5</u> 0.8	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, stiff, brown, moist FILL, silty sand, trace gravel, trace clay,		SS	14	172 -		0			<u>SS1 Analysis:</u> M&I, PAH, PCB
1	170.8	loose, dark brown to brown, moist	2	SS	10	. 171 -		0	_PID: 0 _FID: 0		
2	1.5 170.0	SAND, trace to some silt, trace clay, compact, brown, moist	3	SS	12			0	_PID: 0 FID: 0		
3	2.3	CLAYEY SILT, some sand to sandy, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)	4	SS	23	170 -		0	PID: 0 FID: 0		
Ū			5	SS	54	169 -		0	PID: 0 FID: 0		<u>SS5 Analysis:</u> .pH
4						- 168			_		
5			6	SS	81			Φ	_PID: 0 FID: 0		1 25 48 2
						167 -					
6			7	SS	47	166 -		0	PID: 0 FID: 0		
7						- 165					
8			8	SS	76 / 275mm			0	_PID: 0 FID: 0		• • • •
9						164 -					
9		grey below	9	SS	80	163 -		0	PID: 0 FID: 0	<u>. ⊢</u> j:	<u>SS9 Analysis:</u> BTEX, VOC, PHC
10						- 162			_		
11) SS	50 / 150mm	161 -		0	_PID: 0 _FID: 0		
12						- 161					
			11	SS	50 / 125mm	160 -		• • • • • • • • • • • • • • • • • • •	PID: 0 FID: 0		

Proj	ect No.	: 1-20-0109-01	Client : National Spiritual Assembly of the Baha'i of Canada										Originated by :DH				
Date	e started	1 : June 2, 2022	Proj	ject	: 7	200 8		Compiled by : HR									
Shee	et No.	:2 of 2	Loc	atio	n : T		Checked by : MM										
Positi Rig ty		630593, N: 4852382 (UTM 17T) rack-mounted				Elevati Drilling											
Depth Scale (m)	Elev Depth (m)	SOIL PROFILE Description	Graphic Log	Number	SAMP	SPT 'N' Value	Elevation Scale (m)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined Pocket Penetrometer 40 80 120 160	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	Unstabilized Water Level	Lab Data and Comments GRAIN SIZE DISTRIBUTION (% (MIT)				
	(0	continued)	-			0		40 00 120 100	10 20 30				GR SA SI (

		(continued)			0,	_	 90	140	iyu	<i>,</i>	20	5 50		GR S/	A SI CL
- 13		CLAYEY SILT, some sand to sandy, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL) (continued)				- 159 —									
-	158.6														
- 14	158.6 13.7	CLAYEY SILT , trace to some sand, trace gravel, varved, hard, grey, moist	1:	2 SS	78 / 275mm	-					0		PID: 0 FID: 0		
						158 -								1	
- - 15						-									
				_	50 /	157 -									
-			1:	3 SS	50 / 150mm	157					0		PID: 0 FID: 0		
- 16						-									
						156 -									
-				1 SS	50/ 125mm	-					0		_PID: 0 _FID: 0		
- 17	155.2 17.1		<u>1171</u>		125mm						0		 FID: U	L	

END OF BOREHOLE

Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.

WATER LEVEL READINGS

 Date
 Water Depth (m)
 Elevation (m)

 Jun 23, 2022
 6.6
 165.8

50 mm dia. monitoring well installed.

-	ect N		Clie Pro				-	ial Assembly of the Baha'i of Canada eslie Street, Baha'i National Centre		-	ited by:SM/E
	e star	-	-							-	iled by : HR
	et No	b. : 1 of 2 : E: 630571, N: 4852378 (UTM 17T)	LOC	atio			nill, Ont	: Geodetic		Cnec	ked by : MM
		: Track-mounted					Method	: Hollow stem augers / mud rotary			
Ê		SOIL PROFILE	_		SAMP		e	Penetration Test Values Blows / 0.3m) Moisture / Plasticity	ø	Ħ	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 172.8	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone Plastic Natural Liquid 10 20 30 40 Plastic Natural Liquid Jndrained Shear Strength (kPa) 0 Unconfined + Field Vane PL MC LL 0 Decoket Penetrometer ■ Lab Vane 10 20 30	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
C	172.6 0.2	175mm TOPSOIL		4 1	SS	4			_PID: 0 FID: 0		
		FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, soft to firm, dark brown to brown, moist to wet		2	ss	5	172 -		FID: 0 _PID: 0 _FID: 0		
	171.3 1.5						-				
!	170.5	SANDY SILT to SILT AND SAND, trace to some clay, trace gravel, compact, brown, moist (GLACIAL TILL)		: 3	SS	24	171 –		PID: 0 FID: 0		
	2.3	SAND, trace to some silt, trace clay, trace gravel, dense to very dense, brown, moist		4	SS	47	- 170 –	o	_PID: 0 FID: 0		
				5	SS	54	-	o	_PID: 0 FID: 0		
							169 —				
	168.2 4.6	SANDY SILT to SILT AND SAND, trace to some clay, trace gravel, very dense, brown, moist (GLACIAL TILL)		6	SS	73 / 250mm	- 168 —		PID: 0 FID: 0		
							167 –				
				7	SS	50 / 150mm	-	O	_PID: 0 FID: 0		
			6	•			166 -				
3				.87	<u>ss</u>	50 / 75mm	165 —	o	_PID: 0 _FID: 0		1 40 42 1
				:			-				
	<u>163.7</u> 9.1	CLAYEY SILT to SILT AND CLAY, some		9	SS	50 / 150mm	164 –	o	_PID: 0 FID: 0		
0		sand to sandy, trace gravel, hard, grey, wet (GLACIAL TILL)					163 – -				
1				10	SS	62	162 —	0	_PID: 0 FID: 0		
11							- 161 –				
2			112]							

Project No.	: 1-20-0109-01	Client	: National Spiritual Assembly of the Baha'i of Canada
Date started	: May 25, 2022	Project	: 7200 & 7290 Leslie Street, Baha'i National Centre

Originated by : SM/DH

Compiled by : HR

Checked by : MMT

She	et No	o. : 2 of 2	Location : Thornhill, Ontario								Che	cked by:MMT					
Posit	ion	: E: 630571, N: 4852378 (UTM 17T)			E	Elevati	on Datur	n :G	Beodeti	с							
Rig t	ype	Track-mounted			[Drilling	Method	: H	lollow	stem a	ugers	/ mud	rotary				
(m		SOIL PROFILE			SAMPL	_	ale	Penetr (Blows	ation Te: / 0.3m)	st Value:	<pre></pre>		Moisture	/ Plasticity	Se	٦t	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	1 Undrai OU ● P	ned Shea Inconfined Incoket Per	<u>;0 3</u> ar Stren <u>;</u> netrometer	gth (kPa + Fie	eld Vane b Vane	Plastic N Limit Wate	atural Liquid r Content Limit MC LL Q 30	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 13 -		CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, hard, grey, wet (GLACIAL TILL) (continued)					160								-		
- 14				12	SS	83	159 –						0		PID: 0 FID: 0		
- 15				13	SS	64	158						c		PID: 0 FID: 0		
- 16							157										
- 17	155.6			14	SS	58	156 —						C		_PID: 0 FID: 0		

END OF BOREHOLE

Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.

	ct N		Clie						-	a'i of Canada		-	nated by :DH
ate	star	ted :May 26, 2022	Pro	ject	: 7	200 8	\$ 7290	Leslie Street	, Baha'i Nati	onal Centre		Com	piled by :HF
hee	t No	. :1 of 2	Loc	atio	n : T	hornh	nill, Ont	ario				Che	cked by : M
		E: 630563, N: 4852415 (UTM 17T)						m : Geodetic					
g ty	be :	Track-mounted					Methoo	-		1			1
		SOIL PROFILE			Sampi		cale	Penetration Test V (Blows / 0.3m) X Dynamic Cone		Moisture / Plasticity	e – e	ent	Lab Data
	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	10 20 Undrained Shear S O Unconfined Pocket Penetro	+ Field Vane meter ■ Lab Vane	PL MC LL	Headspace Vapour (ppm)	Instrument Details	Commen Loss GRAIN SIZ GRAIN SIZ GRAIN SIZ DISTRIBUTIO (MIT)
- F	172.6 72.4	GROUND SURFACE				S	ш	40 80	120 160	10 20 30			GR SA S
ľ	0.2	115mm AGGREGATE		1	SS	16				0	PID: 0 FID: 0		SS1 Analysis:
		CLAYEY SILT to SILT AND CLAY, some					172 -						M&I, PAH, PCB
		sand to sandy, trace gravel, very stiff to hard, brown, moist	Í				1					1	
		(GLACIAL TILL)		2	SS	39	·		7	0	_PID: 0 FID: 0	1	
							l		/			1	
				3	SS	32	171 -		1/	0	PID: 0 FID: 0	1	
											FID: 0	1	
		grey below		ļ								1	
		- /		4	SS	31	170 -				PID: 0 FID: 0	1	
							-					1	
					<u> </u>		.					1	
				5	SS	30				0	PID: 0 FID: 0	1	
			Ŕ	\mathbb{H}	<u> </u>	-	169 -					1	
												1	
							· ·					1	
Í	68.0		-14				168 -					1	
	4.6	CLAYEY SILT to CLAY AND SILT, trace t some sand, varved, hard, grey, moist		6	SS	32				0	PID: 0	1	
			F#								FID: 0	1	
												1	
			L L L				167 -				_	1	
												1	
					<i></i>	_	1						
				7	SS	31	166 -			•	_PID: 0 FID: 0	1	
							100-					1	
							.					1	
												1	
ŕ	65.0 7.6	SAND, trace to some silt, trace clay, very	_[12			85 /	165 -				PID: 0	1	
		dense, greyish brown, wet		8	SS	250mm					_PID: 0 _FID: 0	1	
							· ·		/			1	
							164 -					1	
												1	
				Щ								1	
				9	SS	30				0	_PID: 0 FID: 0	1	
							163 -					1	
,												1	
							· ·	1				1	
							162 -					1	
		trace gravel		10	SS	50 / 125mm				0	PID: 0 FID: 0	1	
l						<u> </u>	1.					1	
												1	
							161 -					1	
2												1	
				1		1	I •	4			1	1	1

													•				
Project No. : 1-20-0	109-01 Cli	ient	:	Nation	al Spir	tual As	ssem	bly of	f the	Baha	'i of C	anad	а			Origir	ated by :DH
Date started : May 20	6, 2022 Pr	ojec	ct:	7200 8	x 7290	Leslie	Stre	et, Ba	aha'i	Natio	nal C	entre				Com	piled by:HR
Sheet No. : 2 of 2	2 Lo	cati	on :	Thornh	nill, Ont	ario										Che	cked by :MM
Position : E: 630563, N: 4	4852415 (UTM 17T)			Elevati	on Datu	n : Ge	odetic	;									
Rig type : Track-mounted	1			Drilling	Method	: Mu	ıd rota	ry									
Ê S	SOIL PROFILE		SAM	PLES	٥	Penetrat (Blows /	tion Test	t Values		_		oisture /	/ Diactic		0	L.	Lab Data
(m)		Japriic Log Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dyna 10 Undraine O Und	amic Cone 20 ed Shea confined cket Pene) <u>3(</u> r Streng trometer	th (kPa + Fi ■ La	ield Vane ab Vane	Plasti Limit	c Na Water	itural Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE DISTRIBUTION (% (MIT)
	ome silt, trace clay, very rown, wet <i>(continued)</i>		3 SS	50 / 150mm 50 / 125mm	160 - - - - - - - - - - - - - - - - - - -		88) 12				0			PID: 0 FID: 0 FID: 0 FID: 0 FID: 0 FID: 0 FID: 0		GR SA SI C

END OF BOREHOLE

Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.

	Terraprobe
--	------------

Droject No	: 1-20-0109-01
Project No.	. 1-20-0109-01

Client : National Spiritual Assembly of the Baha'i of Canada Project : 7200 & 7290 Leslie Street, Baha'i National Centre

Originated by : DH

Compiled by : HR

Sheet No. :1 of 2

Date started :

Location : Thornhill, Ontario Checked by : MMT : E: 630589, N: 4852417 (UTM 17T) Position Elevation Datum : Geodetic Drilling Method : Track-mounted Mud rotary Rig type Penetration Test Values (Blows / 0.3m) SOIL PROFILE SAMPLES Scale Lab Data Ē Headspace Vapour (ppm) Moisture / Plasticity Instrument Details and 'N' Value X Dynamic Cone Unstabilized Water Level Scale Graphic Log Plastic Limit Natural Water Content Liquid Limit Comments Number 1,0 20 30 40 Elevation (m) Type <u>Elev</u> Depth Description Undrained Shear Strength (kPa) Depth \$ GRAIN SIZE DISTRIBUTION (%) O Unconfined Pocket Penetrometer + Field Vane ■ Lab Vane (m) SPT 10 $\frac{1}{20}$ 30 (MIT) 172.0 GROUND SURFACE 40 80 120 160 GR SA SI C - 0 172 171.8 75mm ASPHALTIC CONCRETE 0.2 PID: 0 FID: 0 90mm AGGREGATE SS 0 1 12 FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm to stiff, brown, moist PID: 0 FID: 0 1 2 SS 6 0 171 170.5 1.5 CLAYEY SILT to SILT AND CLAY, some PID: 0 FID: 0 3 SS 23 0 sand to sandy, trace gravel, brown, moist -2 (GLACIAL TILL) 170 PID: 0 FID: 0 SS 50 4 Φ - 3 169 _PID: 0 FID: 0 SS 5 35 0 4 168 North States ...grey below PID: 0 FID: 0 SS 6 32 0 - 5 167 - 6 165.9 166 6 1 CLAYEY SILT to CLAY AND SILT, trace to PID: 0 FID: 0 SS 36 ¢ 7 some sand, trace gravel, hard, grey, moist - 7 165 PID: 0 FID: 0 SS 61 0 8 8 164 - 9 163 162.9 9.1 50 / PID: 0 FID: 0 SAND, trace to some silt, trace clay, very 9 SS 0 100mm dense, grey, moist - 10 162 161.3 10.7 50/ PID: 0 FID: 0 CLAYEY SILT to CLAY AND SILT, trace to SS 10 0 50mm some sand, trace gravel, hard, grey, moist 11 161 1-20-0109-01 bh logs.gpj 12 160 PID: 0 FID: 0 SS 50/ 0 11 ile: 50m

(continued next page)

<u> </u>				
Project No.	: 1-20-0109-01	Client	: National Spiritual Assembly of the Baha'i of Canada	Originated by : DH
Date started	:	Project	: 7200 & 7290 Leslie Street, Baha'i National Centre	Compiled by : HR
Sheet No.	:2 of 2	Location	: Thornhill, Ontario	Checked by : MMT

Posit	ion :	: E: 630589, N: 4852417 (UTM 17T)				Elevatio	on Datu	m : Geodetic				
Rig t		: Track-mounted			I	Drilling	Method	I : Mud rotary				
Depth Scale (m)	<u>Elev</u> Depth (m)	SOIL PROFILE Description (continued)	Graphic Log	Number	SAMPI adf	SPT 'N' Value	Elevation Scale (m)	Penetration Test Values (Blows / 0.3m) × Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane 40 80 120 160	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MT) GR SA SI CL
- 13	158.3	CLAYEY SILT to CLAY AND SILT, trace to some sand, trace gravel, hard, grey, moist (continued)					- 159					
- 14 -	13.7	SAND, trace to some silt, trace clay, very dense, grey, wet		12	SS	50 / 125mm	158 -			_PID: 0 _FID: 0		
- 15				13	SS	50 / 125mm	157 -			PID: 0 FID: 0		
- 16 -	<u>155.0</u> 17.0			14	SS	50 / 75mm,	156 - -		0	_PID: 0 _FID: 0		

END OF BOREHOLE

Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.

	3 1	Ferraprobe						LOG OF BOREHOLE	8
Proj	ect No.	: 1-20-0109-01	Clie	ent	: N	lation	al Spir	al Assembly of the Baha'i of Canada Originated by :	SM
Date	e starteo	d :May 31, 2022	Pro	ject	: 7	200 8	& 7290	eslie Street, Baha'i National Centre Compiled by :	HR
She	et No.	:1 of 1	Loc	atio	n : T	hornh	nill, Ont	io Checked by :	MMT
Posit		: 630533, N: 4852428 (UTM 17T)						: Geodetic	
Rig ty	/pe : Ti I	rack-mounted SOIL PROFILE			I SAMPI	•	Method	: Solid stem augers enetration Test Values	
Depth Scale (m)		Description SROUND SURFACE	String Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Blows / 0.3m) Moisture / Plasticity Noisture / Plasticity Noistu	nd ments N SIZE JTION (%)
_	0.2 FI	50mm TOPSOIL ILL, clayey silt, some sand, trace gravel, ace rootlets, trace organics, firm, dark rown to brown, moist		1	SS	7		O PID: 0 FID: 0 SS1 Analysis: Pest.	
- 1				2	SS	8	175 -	O PID: 0 FID: 0	
- -2	sa br	LAYEY SILT to SILT AND CLAY, some and to sandy, trace gravel, stiff to hard, own, moist		3	SS	12	174 -		
-	(0	GLACIAL TILL)		4	SS	21	173 -	O PID: 0 FID: 0	
-3				5	SS	69		O PID: 0 FID: 0	
- 4							172 -		
				6	SS	48	171 -	O PID: 0	
_							- 170 -		
-6				7	SS	30			
-7							169 -		
		AND, trace to some silt, trace clay, very ense, brown, moist		8	ss	97	168 -		

WATER LEVEL READINGS <u>Water Depth (m)</u> 22 2.9 172.9

<u>Date</u> Jun 23, 2022

END OF BOREHOLE

Unstabilized water level measured at 6.1 m below ground surface; borehole was open upon completion of drilling.

50 mm dia. monitoring well installed.

		Terraprobe											LOG	OF	BO	RE	HOLE 9
Proj	ect N	lo. : 1-20-0109-01	Clie	ent	: N	lation	al Spiri	itual Asser	nbly o	f the B	aha'	i of C	anada			Origir	ated by :SM
Date	e sta	rted :May 30, 2022	Pro	ject	: :7	200 8	& 7290	Leslie Str	eet, B	aha'i N	atio	nal C	entre			Com	piled by:HR
She	et No	o. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario								Che	cked by:MMT
		: E: 630536, N: 4852443 (UTM 17T)				Elevati	on Datu	m : Geodet	ic								
Rig t	ype	: Track-mounted		1			Method			,							1
Depth Scale (m)	Elev Depth (m)	SOIL PROFILE	Graphic Log	Number	Lype T	SPT 'N' Value	Elevation Scale (m)	Penetration Te (Blows / 0.3m) X Dynamic Co 10 Undrained She O Unconfine Pocket Pe	ne 2 <u>03</u> ear Streng d netrometer	0 40 gth (kPa) + Field ∎ Lab V	ane	Plasti Limit F	Water Conte	Liquid ent Limit	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MT)
-0	176.0 175.8	GROUND SURFACE	<u>35</u>			S N	ш	40	30 12	20 160		1	0 20	30			GR SA SI CL
-	0.2	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm, dark		1	SS	5	-						0		_PID: 0 FID: 0		<u>SS1 Analysis:</u> Pest.
-1	0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, stiff to hard, brown, moist (GLACIAL TILL)		2	SS	8	175 -						0		PID: 0 FID: 0		
- 2				3	SS	20	- 174 -						0		PID: 0 FID: 0		
-				4	SS	60	_					(þ		PID: 0 FID: 0		
-3		grey below		5	SS	49	173 -				_		o I	-	_PID: 0 FID: 0		1 15 48 36
-4							172 -				_						
5		sand lens, brown, wet		6	SS	47	- 171 -						0		_PID: 0 _FID: 0		
-							-										₽
-6	169.9 6.1 <u>169.7</u> 6.3	SAND, trace to some silt, trace clay, very		7	SS	50 / 100mm	170 -					0			PID: 0 FID: 0		-
-7							169 -										
- 8	<u>167.9</u> 8.1			8	SS	60	- 168 –						0		PID: 0 FID: 0		

END OF BOREHOLE

Unstabilized water level measured at 5.8 m below ground surface; borehole caved to 6.1 m below ground surface upon completion of drilling.

file: 1-20-0109-01 bh logs.gpj

		Terraprobe									LOG OF	BOR	EH	OLE 10
Proj	ect N	No. : 1-20-0109-01	Clie	nt	: ١	lation	al Spir	itual Assem	bly of the	Baha	'i of Canada		Origir	nated by :SM
Date	e star	rted :May 31, 2022	Proj	ject	ι:7	200 8	& 7290	Leslie Stre	et, Baha'i	i Natio	nal Centre		Com	piled by:HR
She	et No	o. :1 of 1	Loc	atio	n : T	hornh	hill, Ont	ario					Che	cked by : MMT
Posit		: E: 630518, N: 4852465 (UTM 17T)						m : Geodeti						
Rig ty	/pe	: Track-mounted					g Method	: Solid sto Penetration Te	0		ſ	1		
Depth Scale (m)	Elev Depth (m) 177.1	GROUND SURFACE	Graphic Log	1 1	SAMPI adf	SPT 'N' Value	Elevation Scale (m)	(Blows / 0.3m) X Dynamic Cor 10 2 Undrained She O Unconfined Pocket Per	ne 0 <u>30</u> ar Strength (kP + F etrometer ■ L	4 <u>0</u> a) ïield Vane ab Vane 160	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-	<u>176.9</u> 0.2			1	SS	6	177 -				0	_PID: 0 _FID: 0		<u>SS1 Analysis:</u> Metals, Pest.
- 1				2	SS	6	176 -				0	_PID: 0 FID: 0		
-	<u>175.6</u> 1.5			3	SS	23	-				φ	_PID: 0 _FID: 0		
-2 -		(GLACIAL TILL)		4	SS	41	175 -				0	_PID: 0 FID: 0		
-3							174 -					PID: 0		
-				5	SS	46					0	FID: 0		
-4 -							173 -					-		
-5		grey below		6	SS	31	172 -				φ	_PID: 0 _FID: 0		
- -6							- 171 -					 PID: 0		
- 7				7	SS	47					0	FID: 0		
-							170 -					_		
-8	169.0 8.1			8	SS	69					0	PID: 0 FID: 0	<u> </u>	

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

file: 1-20-0109-01 bh logs.gpj

		o. : 1-20-0109-01	Clien	IL.	. 1	auon		tual Assembly of				Ongin	ated by :SM
Date	star	ted : June 1, 2022	Proje	ect	: 7	200 8	& 7290	Leslie Street, Bal	ha'i Natio	nal Centre		Com	piled by:HR
Shee	et No	. :1 of 2	Loca	tior	ר: T	hornł	nill, Ont	ario				Che	cked by:MM
Positi	on :	E: 630561, N: 4852469 (UTM 17T)			I	Elevati	on Datu	n : Geodetic					
Rig ty	pe :	Track-mounted				-	g Methoo	-		F			1
(m) e		SOIL PROFILE	0	5	Sampl		Scale	Penetration Test Values (Blows / 0.3m) X Dynamic Cone	2	Moisture / Plasticity	, ace	ent s	Lab Data _{যু অ} and
Depth Scale (m)	Elev	Description	Graphic Log	Number	Type	'N' Value	ion S	10 20 30 Undrained Shear Strength	4 <u>0</u>	Plastic Natural L Limit Water Content	Headspace Vapour (ppm)	Instrument Details	Comments GRAIN SIZE GRAIN SIZE DISTRIBUTION (⁶
Depth	Depth (m)		Braph	Nun	Τ	SPT 'N	Elevation (m)	 Unconfined Pocket Penetrometer 	➡ Field Vane ■ Lab Vane		He	μ	GRAIN SIZE → DISTRIBUTION ((MIT)
0	176.6 176.4	GROUND SURFACE 200mm TOPSOIL				S	ш	40 80 120	160	10 20 30			GR SA SI
	0.2	FILL, silty sand, trace gravel, trace clay, very loose, dark brown to brown, moist		1	SS	5		\mathbf{X}		0	_PID: 0 FID: 0		<u>SS1 Analysis:</u> Pest.
	175.8 0.8						176 -						1050
1	0.0	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, stiff to hard,		2	SS	13	.			0	_PID: 0 FID: 0		
		brown, moist (GLACIAL TILL)											
				3	SS	31	175 -			0	_PID: 0 FID: 0		
2				+			.		$\setminus $				
									N		_PID: 0		
				4	SS	41	174 -			0	FID: 0		
3													
				5	SS	34			()	0	_PID: 0 FID: 0		
							173 -						
1									N				
				_			172 -		$- \mathbf{h}$				
5				6	SS	45			/	0	PID: 0 FID: 0		
							171 -						
6									/				
				7	SS	31				0	PID: 0 FID: 0		· ·
							170 -						
7									N				
							-						
	169.0 7.6	SAND, trace to some silt, trace clay, very	[2]	8	SS	50 /	169 -		-	0	PID: 0 FID: 0		
8		dense, greyish brown, moist to wet		•	33	100mm	1				FID: 0		
							-						1
							168 -						
9												. + .	
-				9	SS	50 / 100mm				0	_PID: 0 FID: 0		
							167 -						
10													
10							-						
							166 -						
11				10	SS	50 / 100mm	1			0	PID: 0 FID: 0		
11							·						
							165 -						
	. I		1.			1	I				1		
12													

<u> </u>			
Project No.	: 1-20-0109-01	Client	: Natio

onal Spiritual Assembly of the Baha'i of Canada Project : 7200 & 7290 Leslie Street, Baha'i National Centre

Originated by : SM

Compiled by : HR

Sheet No. :2 of 2

Date started : June 1, 2022

Location : Thornhill, Ontario

Checked by : MMT

Posit	ion :	: E: 630561, N: 4852469 (UTM 17T)			I	Elevati	on Datur	n : Geodetic							
Rig t	/pe :	: Track-mounted			I	Drilling	Method	: Mud rotar	у						
Ê		SOIL PROFILE		:	SAMPI	ES	e	Penetration Test (Blows / 0.3m)	Values		Moisture /	Plasticity	e	t	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description (continued)	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	× Dynamic Cone <u>10</u> <u>20</u> Undrained Shear O Unconfined ● Pocket Penetr <u>40</u> 80	Strength (kPa + Fie rometer La	40 I) eld Vane b Vane 60	Plastic Nature / Limit Water C	ural Liquid Content Limit	Headspace Vapour (ppm)	Instrument Details	Baller Balle
- 13 - - 14 - - 15		SAND, trace to some silt, trace clay, very dense, greyish brown, moist to wet (continued)		12	SS	50 / 75mm	164 - - 163 - - 162 -				0		PID: 0 FID: 0 PID: 0		
	161.2 15.4		[13		150mm				1	0		FID: 0		
		END OF BOREHOLE									EVEL READING				
		Unstabilized water level and cave could not be measured due to the use of mud rotary drill technique.						Ju	<u>Date</u> ın 23, 2022	<u>Wate</u>	r Depth (m) dry	<u>Elevation (m</u> n/a	IJ)		
		50 mm dia. monitoring well installed.													

		Terraprobe											L	OG	OF E	BOR	EH	OLE 12
Proj	ect N	lo. : 1-20-0109-01	Clie	nt	: N	lation	al Spiri	tual A	Assem	nbly c	f the	Baha	'i of C	Canada			Origir	ated by:DH
Date	e stai	ted : June 1, 2022	Pro	ject	: 7	200 8	& 7290	Lesli	e Stre	et, B	aha'i	Natio	nal C	entre			Com	piled by:HR
She	et No	o. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario									Che	cked by:MMT
Posit	ion	: E: 630575, N: 4852497 (UTM 17T)				Elevati	on Datur	n : (Geodeti	с								
Rig ty	/pe	: Track-mounted				-	Method		Solid sto		<u> </u>							
Depth Scale (m)	<u>Elev</u> Depth (m) 178.0		Graphic Log	Number	SAMP	SPT 'N' Value	Elevation Scale (m)	(Blows	s / 0.3m) mamic Cor 1 <u>02</u> ined She Jnconfined Pocket Per	ie 0 <u>3</u> ar Stren etromete	gth (kPa) th (kPa) th Fie the the the the the the the the the the	ld Vane	Plas Limit		al Liquid	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
- 0	177.8 0.2	200mm TOPSOIL FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, trace wood pieces, firm, dark brown, moist		1	SS	7	_							0		PID: 0 FID: 0		<u>SS1 Analysis:</u> Pest.
-1	<u>177.2</u> 0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		2	SS	20	177							0		_PID: 0 FID: 0		
-2				3	SS	25	- 176 -			\mathbf{r}				0		_PID: 0 _FID: 0		
-				4	SS	40	-							0		_PID: 0 FID: 0		<u>SS4 Analysis:</u> .pH
-3				5	SS	72	175 -									PID: 0 FID: 0		
-4							174 -									-		
-	<u>173.4</u> 4.6	SAND, trace to some silt, trace clay, very dense, brown, damp to moist		6	SS	60	-						0			_PID: 0 FID: 0		
-5							- 173 -											
-6				7	SS	70	172 -						0			PID: 0 FID: 0		
-7							171 —									_		
- 8				8	SS	85	- 170 -						0			PID: 0 FID: 0		
-							-											
-9	<u>168.6</u> 9.4			9	SS	50 / 150mm	169 -						ρ			_PID: 0 _FID: 0		

END OF BOREHOLE

Proje	ect No	o. : 1-20-0109-01	Clie	ent	: N	Vation	al Spir	tual A	ssembly o	of the	Baha	'i of Canada			Origir	nated by:SM
Date	start	ed :May 31, 2022	Pro	ject	: :7	200 8	\$ 7290	Leslie	Street, B	Baha'i	Natio	nal Centre			Com	piled by:HR
Shee	et No.	-	Loc	atio	n · T	hornh	nill, Ont	ario								cked by :MMT
Positi		E: 630540, N: 4852490 (UTM 17T)	200				on Datu		eodetic						0110	
Rig ty		Track-mounted					Method		olid stem au	gers						
		SOIL PROFILE			SAMP	LES	<u>u</u>	Penetra (Blows /	tion Test Value	s		Maiatura / Dias	ticity	a)	L.	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dyn 10 Undrain O Un	amic Cone	ngth (kPa + Fie	ld Vane	Moisture / Plas Plastic Natural Limit Water Conte	Liquid nt Limit	Headspace Vapour (ppm)	Instrument Details	and Comments Iggination GRAIN SIZE DISTRIBUTION (%) (MIT)
0	178.1	GROUND SURFACE	0 <u></u>			L.S.	回 178-	40) 80 1	20 10	<u>30</u>	10 20	30			GR SA SI CL
	0.2	150mm TOPSOIL FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm, dark brown, moist		1	SS	7						0		PID: 0 FID: 0		<u>SS1 Analysis:</u> Metals, Pest.
1	0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, very stiff to hard, brown, moist		2	SS	36	177 -			>		0		_PID: 0 FID: 0		
-2		(GLACIAL TILL)		3	SS	15			\langle			0		PID: 0 FID: 0		
2				4	SS	42	176 -				>	0		_PID: 0 _FID: 0		
3							475									
				5	SS	32	175 -			$\left(\right)$		0		_PID: 0 FID: 0		
4							174 -									
	173.5 4.6	CLAYEY SILT to CLAY AND SILT, trace to some sand, trace gravel, very stiff, grey,		6	SS	28	. <u>.</u>					₽		_PID: 0 FID: 0		0 1 39 60
5		moist					173 -									
6				7	SS	15	172 -					•		PID: 0 FID: 0		Ā
.7														FID: 0		
	170.5						171 -									
8	170.5 7.6	SAND, trace to some silt, trace clay, very dense, brown, moist		8	SS	50 / 150mm	170 -					•		_PID: 0 FID: 0		
.9							- 169 -									

Unstabilized water level measured at 6.1 m below ground surface; borehole caved to 7.0 m below ground surface upon completion of drilling.

file: 1-20-0109-01 bh logs.gpj

		Terraprobe											L	OG O)F E	BOR	EH	OLE 14
Proj	ect N	lo. : 1-20-0109-01	Clie	nt	: N	lation	al Spiri	tual A	Assem	nbly o	of the	Baha	'i of C	Canada			Origir	nated by :HR
Date	e star	ted : June 2, 2022	Pro	ject	:7	200 8	§ 7290	Lesli	e Stre	eet, B	aha'i	Natio	nal C	entre			Com	piled by:HR
She	et No	o. :1 of 1	Loc	atio	n:T	hornh	nill, Ont	ario									Che	cked by:MMT
Posit	ion	: E: 630552, N: 4852508 (UTM 17T)					on Datur		Geodeti	ic								
Rig t		: Track-mounted			ſ	Drilling	Method	: S	Solid st	em au	gers							
Ê		SOIL PROFILE			SAMPL		ale	Penetr (Blows	ation Te / 0.3m)	st Value	s		N	/loisture / Plasti	city	e	tr	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	1 Undrai O U ● P	ned She Inconfined Pocket Per	2 <u>03</u> ar Stren I netrometer	gth (kPa + Fie r ∎ La	eld Vane Ib Vane	Plas Limit	tic Natural Water Content	Liquid	Headspace Vapour (ppm)	Instrument Details	P P P P P P P P P P P P P P P P P P P
-0	179.1	GROUND SURFACE 280mm TOPSOIL	<u></u>			S	179 -	4	8	30 1:	20 1	60		10 20	30			GR SA SI CL
	178.8 0.3	(WEATHERED/DISTURBED)	1. Føj	1	SS	6								0		_PID: 0 FID: 0		SS1 Analysis:
-1	<u>178.3</u> 0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, very stiff to hard, brown, moist		2	SS	19	178 –		\setminus					0		_PID: 0 _FID: 0		Pest.
		(GLACIAL TILL)																
-2				3	SS	30	- 177 -							0		_PID: 0 FID: 0		
-				4	SS	43	-							0		_PID: 0 FID: 0		
-3				5	SS	46	176 —							0		PID: 0 FID: 0		
-4							- 175 —											
-				6	SS	87 / 250mm	-						0			PID: 0 FID: 0		
-5				Ӈ		2001111	174											
-	173.0						-											
-	172.5 6.6	SAND, trace to some silt, trace clay, very dense, brown, moist		7	SS	39	173 -				(0		_PID: 0 FID: 0		· · ·
-7	0.0						172 —									-		•
- 8	171.5 7.6	SAND , trace to some silt, trace clay, very dense, brown, damp to moist		8	SS	81 / 250mm							0			PID: 0 FID: 0		
- -9							- 170 -											
				9	SS	85 / 250mm							0			_PID: 0 FID: 0		
ŀ	169.6 9.5						1		I	1	I		I			L		

WATER LEVEL READINGS
<u>Date Water Depth (m)</u> <u>Elevation (m)</u>
Jun 23, 2022 dry n/a

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

50 mm dia. monitoring well installed.

file: 1-20-0109-01 bh logs.gpj

: 1-20-0109-01	Client	: National Spiritual Assembly of the Baha'i of Canada

Project : 7200 & 7290 Leslie Street, Baha'i National Centre

Originated by : DH

Compiled by : HR

Checked by : MMT

Date started : May 25, 2022

Project No.

Sheet No. : 1 of 1 Location : Thornhill, Ontario

ne				-		JII Dalui	n : Geod	euc								
ype	: Track-mounted			0	Drilling	Method	: Solid	stem au	gers							
	SOIL PROFILE			SAMPL		e	Penetration (Blows / 0.3	Test Value	s		м	oisture / Plast	icity	Ð	t	Lab Data
<u>Elev</u> Depth (m) 158.6	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	X Dynamic 10 Undrained S O Unconfi	Cone 20 Shear Strer ned Penetromete	3 <u>0</u> 4 ngth (kPa) + Fie er ∎ Lat) Id Vane b Vane	Plasti Limit	C Natural Water Content		Headspac Vapour (ppm)	Instrumen Details	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
	140mm TOPSOIL					-										
157.8	FILL, sandy silt, trace clay, trace rootlets, trace organics, loose to compact, dark brown, moist		1	SS	5	158 -						0		FID: 0		
0.8	FILL, silty sand, trace gravel, trace clay, compact, dark brown, moist		2	SS	11	-						0		_PID: 0 FID: 0		
157.1																
1.5	SAND, trace to some silt, trace clay, compact to very dense, brown, wet loose moist		3	SS	6	157 –					(C		PID: 0 FID: 0		
						-										
			4	SS	14	156 -					0			PID: 0 FID: 0		
								N								
			5	SS	23	-					0			_PID: 0 FID: 0		
						155 -										
						-										
																$\overline{\Delta}$
			6	SS	59	154 -						0		PID: 0 FID: 0		
						-										
						152										
						153-										
152.4			7	SS	50 /	-						0		PID: 0		
	Depth (m) <u>157.8</u> 0.8 <u>157.1</u> 1.5	Elev Depth (m) Description 158.6 GROUND SURFACE 140mm TOPSOIL FILL, sandy silt, trace clay, trace rootlets, trace organics, loose to compact, dark 0.8 FILL, silty sand, trace gravel, trace clay, compact, dark brown, moist 1.5 SAND, trace to some silt, trace clay, compact to very dense, brown, wet loose moist 152.4 152.4	Elev Depth (m) Description 158.6 GROUND SURFACE 140mm TOPSOIL FILL, sandy silt, trace clay, trace rootlets, trace organics, loose to compact, dark 157.8 brown, moist 0.8 FILL, silty sand, trace gravel, trace clay, compact, dark brown, moist 157.1 SAND, trace to some silt, trace clay, compact to very dense, brown, wetloose moist	Elev Depth (m) Description Difference (Elev Depth (m) Description 158.6 GROUND SURFACE 1 1 157.8 FILL, sandy silt, trace clay, trace rootlets, trace organics, loose to compact, dark 1 1 157.8 brown, moist 2 2 157.1 SAND, trace to some silt, trace clay, compact dark brown, wet 3 3 1.5 SAND, trace to some silt, trace clay, compact to very dense, brown, wet 3 4 1.5 Generation 6 6 152.4 7 7	Elev Depth (m) Description age (F) 158.6 GROUND SURFACE 1 SS 140mm TOPSOIL 1 SS FILL, sandy silt, trace clay, trace rootlets, trace organics, loose to compact, dark 1 SS 157.1 FILL, silty sand, trace gravel, trace clay, compact, dark brown, moist 2 SS 157.1 SAND, trace to some silt, trace clay, compact to very dense, brown, wet 3 SS loose moist 4 SS 1 6 SS 1 SS 152.4 7 SS	Elev Depth (m) Description Image of the second of the second sec	Elev Depth (m) Description Image of the system Image of the system	Elev Depth Description Image: Second	Elev Depth (m) Description Image: Solution Imag	Elev Depth (m) Description Image of the sec strength (Page of the sec streng of the sec strength (Page of the sec strength (Page of	Elev Depth (m) Description Image: Comparison of the compari	Elev Depth (m) Description Image: Second Se	Elev Deprin (m) Description 0 9 2 6 0 9 2 5 0 2 5 0 2 5 XDuence (minute under strength (RPa)) (Elev Depth (m) Description 00 genetic (m) 00 genetic	Eleving Description Bit Product <	Leave Description Bot of the second

END OF BOREHOLE

Unstabilized water level measured at 4.6 m below ground surface; borehole caved to 5.2 m below ground surface upon completion of drilling.

		Ferraprobe											L	OG	i 0	FE	BOR	EH	OLE 17
Proj	ect No.	: 1-20-0109-01	Clie	nt	: N	lation	al Spir	itual A	ssen	nbly o	of the	Baha	'i of C	anad	a			Origin	ated by:DH
Date	e starte	d :May 25, 2022	Proj	ject	: 7	200 8	\$ 7290	Lesli	e Stre	eet, E	Baha'i	Natio	onal Co	entre				Com	piled by:HR
She	et No.	:1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario										Che	cked by:MMT
Posit		:: 630665, N: 4852626 (UTM 17T)					on Datu												
Rig ty	vpe :I	rack-mounted SOIL PROFILE		1	SAMP		Method		olid st ation Te		•								
Depth Scale (m)	<u>Elev</u> Depth (m) 155.4	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	(Blows XDy 1 Undrai OU ● P	/ 0.3m) namic Co 0 2 ned She Inconfined ocket Per	ne 20 ar Strer 1 netromete	3 <u>0</u> ngth (kPa + Fie er ■ La	4 <u>0</u> a) eld Vane ab Vane 60	Plasti Limit	c Na Water	/ Plastic tural Content	ity Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-	0.2 F	50mm TOPSOIL ILL, silty sand, trace gravel, trace clay, lose, dark brown, moist		1	SS	5	155 -								0				
-1				2	SS	8	. 							0					
- -2		AND, trace to some silt, trace clay, ompact, brown, moist		3	SS	13	154 -						0						
-		wet below		4	SS	25	153 -			$\left \right\rangle$				0					
-3 -				5	SS	21	152 -							0					Ā
-4							- 151 -												
- -5				6	SS	24	-							0					
-							150 -												
-	148.8 6.6			7	SS	26	149 -							0					

END OF BOREHOLE

Unstabilized water level measured at 3.0 m below ground surface; borehole caved to 4.9 m below ground surface upon completion of drilling.

file: 1-20-0109-01 bh logs.gpj

		Terraprobe											L	OG	i 0	FE	BOR	EH	OLE 18
Proj	ect N	lo. : 1-20-0109-01	Clie	nt	: N	Vation	al Spir	tual A	ssen	nbly o	f the	Baha	'i of C	anad	а			Origir	nated by :DH
Date	e star	rted :May 24, 2022	Proj	ect	: 7	200 8	k 7290	Lesli	e Stre	eet, B	aha'i	Natio	nal C	entre				Com	piled by:HR
She	et No	o. :1 of 1	Loc	atic	n : T	hornh	ill, Ont	ario										Che	cked by :MMT
Posit	ion	: E: 630680, N: 4852602 (UTM 17T)				Elevatio	on Datu	n : G	Geodet	ic									
Rig ty	ype	: Track-mounted				Drilling	Method	: S	olid st	em au	gers								
(E		SOIL PROFILE			SAMP		Scale	(Blows	ation Te /0.3m) namic Col	st Value:	2		м	oisture	Plastic	ity	e _	ent	Lab Data হ ল and
Depth Scale (m)	Elev	5 <i>r</i>	Graphic Log	ber	е	SPT 'N' Value	on S(m	1	0 2			40	Plasti Limit	ic Na Water	tural Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	and E Server
Jepth	Depth (m)	Description	raphi	Number	Type	N' To	Elevation ((m)	οu	Inconfined		🕇 Fie	i) eld Vane Ib Vane	F	°∟ ∧ ┣────		4	Ц Н Ц	lns D	ິຊີສັ GRAIN SIZE DISTRIBUTION (%) (MIT)
-0	157.1	GROUND SURFACE 250mm TOPSOIL	<u></u>	_		SF	田 157 -	4	β 0 ε	30 12	20 1	60	1	0 2		30			GR SA SI CL
	156.8 0.3	FILL, silty sand, trace gravel, trace clay,		1	SS	5	157 -								0		PID: 0 FID: 0		
-		very loose to loose, dark brown to brown, moist		_			-												
- 1				2	SS	4	450										PID: 0		
					00	-	156 -					1		[FID: 0		<u>SS2 Analysis:</u> M&I, PAH, PCB
-				-			-												
-2				3	SS	2		$\left \right\rangle$					0				_PID: 0 FID: 0		
	154.8 2.3						155 -		\land										
F	2.5	SAND, trace to some silt, trace clay, compact to very dense, brown, moist		4	SS	28	-			\searrow			0				_PID: 0 FID: 0		SS4 Analysis:
-3				<u> </u>						`									.pH
J							154 -										PID: 0		
-				5	SS	36							0				FID: 0		
-4							153 -												
-																			
		wet below		6	SS	37								0			_PID: 0 FID: 0		<u>SS6 Analysis:</u> BTEX, VOC, PHC
-5				-			152 -												BTEX, VÓC, PHC
-												$\left \right\rangle$						に目に	
							-					$ \rangle$							
-6				<u> </u>			151 -												
_				7	SS	77								0			PID: 0 FID: 0		
				:			-												
-7							150 -												
				8	SS	50 / 125mm	-								0		_PID: 0 FID: 0		
-8						<u>1201111</u>	149 -										_		
Ē							-												
-9							148 -										PID: 0		
	147.9 9.2			9	, ss	50 / 100mm	.40			I	I	I							
		END OF BOREHOLE								Dat			EVEL R e r Dept h			ation (n	n)		
		Borehole was dry and open upon completion	n							Jun 23,	2022	viale	4.8	<u>. (111)</u>	1	52.3	4		
		of drilling.																	
		50 mm dia. monitoring well installed.																	

Project No.	: 1-20-0109-01	Client : National Spiritual Assembly of the Baha'i of Canada	Originated by : DH
Date started	: May 24, 2022	Project : 7200 & 7290 Leslie Street, Baha'i National Centre	Compiled by : HR
Sheet No.	:1 of 1	Location : Thornhill, Ontario	Checked by : MMT

0110			200	uuo			ini, Ori			Onot	
Posi	tion :	: E: 630670, N: 4852558 (UTM 17T)				Elevati	on Datu	: Geodetic			
Rig t	ype :	Track-mounted				Drilling	Method	: Solid stem augers			
(u		SOIL PROFILE			SAMP	LES	e	Penetration Test Values Blows / 0.3m) Moist	ture / Plasticity 8	-+ (Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 155.4	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone Plastic	Natural Liquid Nater Content Limit MC LL 20 30	Vapour Vapour (ppm) Instrument Details	GRAIN SIZE GRAIN SIZE GRAIN SIZE DISTRIBUTION (% (MIT) GR SA SI C
- 0 -	<u>155.2</u> 0.2			1	SS	3	155 -	c		D: 0 D: 0	
- 1	154.6 0.8	SAND, trace to some silt, trace clay, compact, brown, moist		2	SS	14	- 154 -	· · · · · · · · · · · · · · · · · · ·			
-	<u>153.4</u> 2.0			3	SS	20	-	0			

END OF BOREHOLE

Project No. : 1-20-0109-01	Client : National Spiritual Assembly of the Baha'i of Canada	Originated by : DH
Date started : May 24, 2022	Project : 7200 & 7290 Leslie Street, Baha'i National Centre	Compiled by : HR
Sheet No. : 1 of 1	Location : Thornhill, Ontario	Checked by : MMT
Position : E: 630688. N: 4852542 (UTM 17T)	Elevation Datum : Geodetic	

Posit	on	: E: 630688, N: 4852542 (UTM 171)				Elevati	on Datur	n : G	eodeti	С										
Rig ty	рe	: Track-mounted			I	Drilling	Method	: S	olid ste	em au	gers									
(u		SOIL PROFILE			SAMPI	LES	ale		ation Te: / 0.3m)	st Value	3		M	oioturo	/ Plastic	oitu	e	t		Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 159.6	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	×Dyr 1 Undrair OU ● P	namic Cor 0 2 ned Shea nconfined ocket Pen	<u>,03</u> ar Stren	gth (kPa + Fie ∎ Lal	40) eld Vane b Vane 60	Plasti Limit	c N Wate	atural r Content MC	Liquid	Headspac Vapour (ppm)	Instrument Details	Unstabilized Water Level	and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CI
-0	159.4 0.2		<u>s 1</u> ,				-							-		1				GR SA SI CL
_	0.2	FILL, silty sand, some gravel to gravelly, loose, brown, moist		1	SS	4	159 —						0				_PID: 0 FID: 0			
	158.8								\mathbf{N}											
- 1	0.8	SAND, trace to some silt, trace clay, compact, brown, moist		2	ss	21	-						0				_PID: 0 FID: 0			
							158 -													
	157.6			3	SS	20	130		1				0				_PID: 0 FID: 0			
	157.6 2.0						•												•	

END OF BOREHOLE

Date started

LOG OF BOREHOLE 21

Project No. : 1-20-0109-01 Client

: May 24, 2022

Project : 7200 & 7290 Leslie Street, Baha'i National Centre

: National Spiritual Assembly of the Baha'i of Canada

Originated by : DH

Compiled by : HR

She	et No	o. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario									Cheo	cked by:MMT
Pos Rig		:E: 630666, N: 4852511 (UTM 17T) :Track-mounted					on Datur Method	m:Geodeti :Solid ste		gers								
Depth Scale (m)	<u>Elev</u> Depth (m) 157.7	Description	Graphic Log	Number	SAMP	SPT 'N' Value	Elevation Scale (m)	Penetration Te: (Blows / 0.3m) X Dynamic Cor 10 2 Undrained Shea O Unconfined Pocket Pen 40 8	ie <u>0 3</u> ar Stren etrometer	3 <u>0</u> igth (kl	4 <u>0</u> Pa) Field Vane Lab Vane 160	Plasti Limit	c Na Water	/ Plastic atural Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
-	157.5 0.2 156.9 0.8	FILL, silty sand, trace gravel, trace clay, loose to compact, dark brown to brown, moist			SS	12	- 157 -						0			PID: 0 FID: 0		
- 1 -		SAND, trace to some silt, trace clay, trace to some gravel, loose to compact, brown, moist			SS SS	6 28			\geq			0				PID: 0 FID: 0 PID: 0 FID: 0		
	155.7 2.0			·1]											

END OF BOREHOLE

Project No. : 1-20-0109-01	Client : National Spiritual Assembly of the Baha'i of Canada	Originated by : DH
Date started : May 25, 2022	Project : 7200 & 7290 Leslie Street, Baha'i National Centre	Compiled by : HR
Sheet No. : 1 of 1	Location : Thornhill, Ontario	Checked by : MMT
Position : E: 630704, N: 4852492 (UTM 17T)	Elevation Datum : Geodetic	
Rig type : Track-mounted	Drilling Method : Solid stem augers	
	Departmention Test Volues	

(m)		SOIL PROFILE			SAMPI	ES	ale		ation Tes / 0.3m)	t Values	;i		Me	victuro	/ Plastic	oitu	ce	t	Lab Data
Depth Scale (n	<u>Elev</u> Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sca (m)	×Dyu 1 Undrain OU ● P	namic Con 0 2 ned Shea nconfined ocket Pen 0 8	0 <u>3</u> ar Strenç etrometer	gth (kPa + Fie ∎ La	40 I) eld Vane b Vane 60	Plastic Limit PL	Wate	atural r Content	Liquid	Headspac Vapour (ppm)	Instrument Details	and Event and Comments and Comments GRAIN SIZE DISTRIBUTION (%) (MIT)
-0	162.1 161.9 0.2		<u>× 1</u> /			0,	162 -	<u> </u>		5 12	.0 1	1		,					GR SA SI CI
_	0.2	(WEATHERED/DISTURBED)		1	SS	5								1	þ		_PID: 0 FID: 0		
	161.3						-	1	\mathbf{N}										
- 1	0.8	SAND, trace to some silt, trace clay, compact to dense, brown, moist		2	SS	20	161 -						0				PID: 0 FID: 0		<u>SS2 Analysis:</u> M&I, PAH, PCB
																			Mol, FAH, FCD
	160.1 2.0			3	SS	42	-						0				PID: 0 FID: 0		

END OF BOREHOLE

160.2 0.2

-0

- 1

LOG OF BOREHOLE 23

0

0

Project No. : 1-20-0109-01	Client : National Spiritual Assembly of the Baha'i of Canada	Originated by : DH										
Date started : May 25, 2022	Project : 7200 & 7290 Leslie Street, Baha'i National Centre	Compiled by :HR										
Sheet No. : 1 of 1	Location : Thornhill, Ontario Checked by : MMT											
Position : E: 630716, N: 4852455 (UTM 17T) Rig type : Track-mounted	Elevation Datum : Geodetic Drilling Method : Solid stem augers											
E SOIL PROFILE 900 Soil a Elev Depth Description 0 160.4 GROUND SURFACE	SAMPLES and the second secon	Caport And Caport Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments (MT) Comments (MT)										

160

159

END OF BOREHOLE

(GLACIAL TILL)

 158.6

 158.4

 2:0

 sand to sandy, trace gravel, firm, brown, moist

165mm TOPSOIL

Borehole was dry and open upon completion of drilling.

FILL, silty sand, trace gravel, trace to some clay, loose, brown, moist

<u>, 1</u>/.

Føł

1

2 SS 4

3 SS 7

SS 5

Terraprobe	2	be	apro	Terr	
------------	---	----	------	------	--

	2	l erraprobe						LO	G OF BOR	EHOLE 24
Proj	ect N	lo. : 1-20-0109-01	Clie	ent	: N	lation	al Spir	ual Assembly of the Baha'i of Car	nada	Originated by :DH
Date	e star	ted : June 8, 2022	Pro	ject	Compiled by :HR					
She	et No	o. :1 of 1	Loc	atic	on : T	hornh	nill, Ont	ario		Checked by : MMT
Posit	tion	: E: 630517, N: 4852562 (UTM 17T)				Elevati	on Datu	1 : Geodetic		
Rig t	уре	: Track-mounted				Drilling	Method	: Solid stem augers		
Ê		SOIL PROFILE			SAMP		ale	Penetration Test Values (Blows / 0.3m) Moist	ture / Plasticity	tz Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 177.1	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone 10 20 20 40 Plastic	ture / Plasticity S b C C C C C C C C C C C C C C C C C C	Lab Data and Comments GRAINSIZE (MIT) (MIT) (MIT) (MIT)
-0		140mm TOPSOIL					177 -			
-	176.3	(WEATHERED/DISTURBED)			SS	6	-		D PID: 0 FID: 0	
- 1	0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		2	SS	15	176 -		PID: 0 FID: 0	
-2				3	SS	26	- 175 -	•	PID: 0 FID: 0	
-				4	ss	46	-		PID: 0 FID: 0	
-3 -		grey below		5	ss	27	174 -		OPID: 0 FID: 0	
-4							173 -			
-5				6	SS	41	- 172		O PID: 0 FID: 0	
-		brown		7	SS	71	- 171 -		PID: 0	
ŀ	170.5 6.6			1						

<u>Date</u> Jun 23, 2022

WATER LEVEL READINGS <u>Water Depth (m)</u> <u>Elevation (m)</u> 022 dry n/a

END OF BOREHOLE

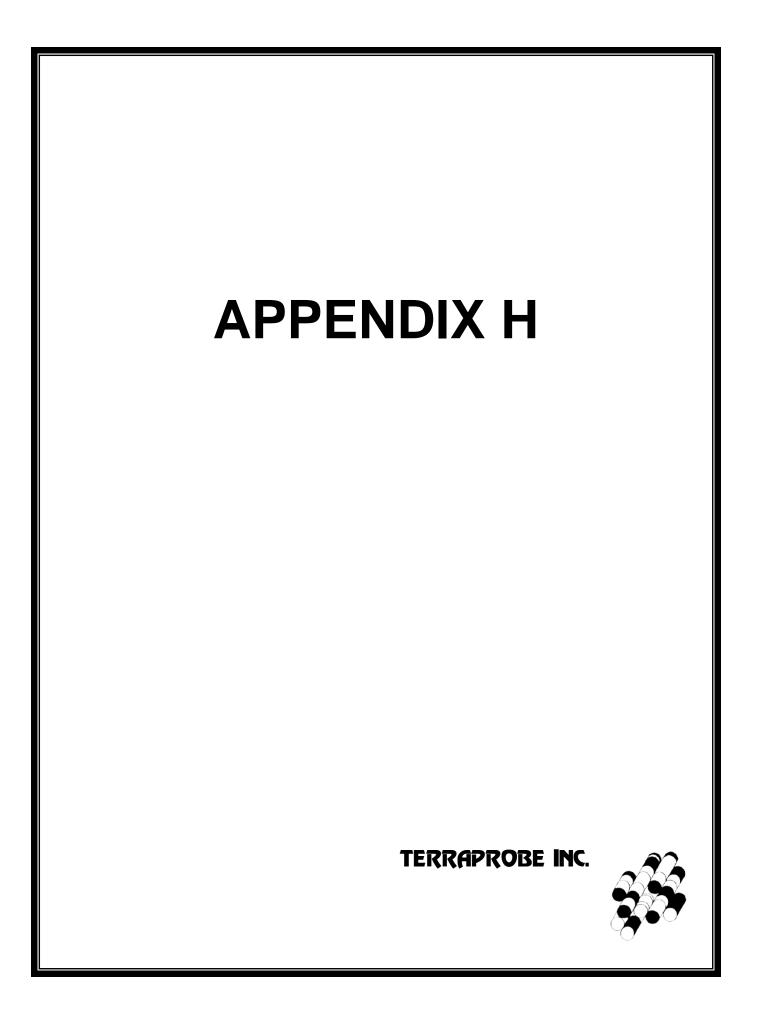
Borehole was dry and open upon completion of drilling.

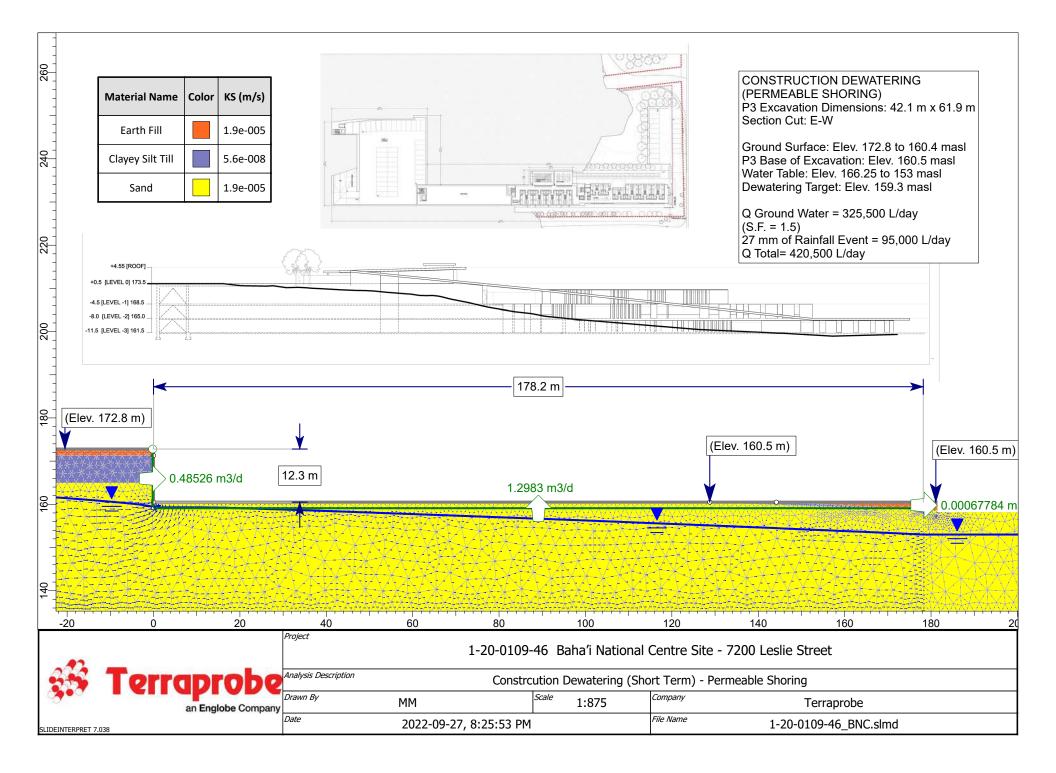
50 mm dia. monitoring well installed.

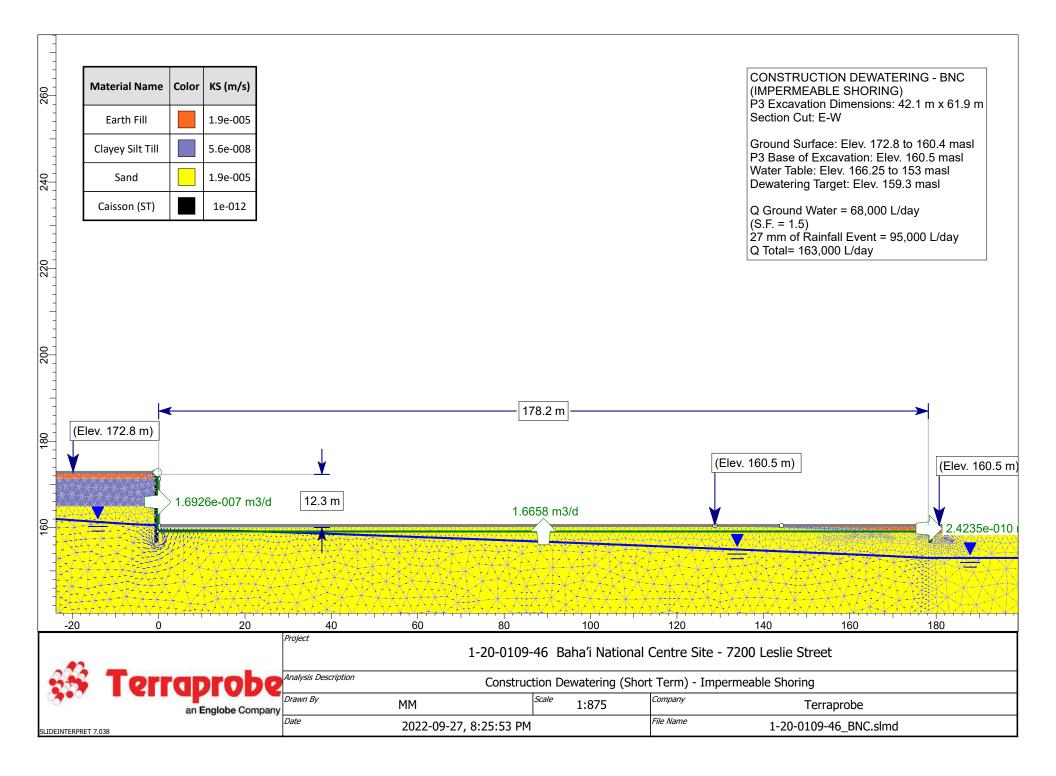
		Terraprobe										LO	G O	FE	BOR	EH	OLE 25
Proj	ject N	lo. : 1-20-0109-01	Clier	nt	: N	lation	al Spiri	itual Asser	nbly of	the E	Baha'	i of Cana	da			Origin	nated by :DH
Date	e star	rted : June 6, 2022	Project : 7200 & 7290 Leslie Street, Baha'i National Centre									Compiled by :HR					
She	et No	p. :1 of 1	Loc	atio	n : T	hornt	hill, Ont	tario								Che	cked by:MMT
Posit	ion	: E: 630471, N: 4852636 (UTM 17T)			ŗ	Elevati	on Datu	m : Geodet									
Rig t	уре	: Track-mounted		,			g Method			ers							-
E)	\vdash	SOIL PROFILE			SAMPL		Scale	Penetration Te (Blows / 0.3m) X Dynamic Co)	\geq		Moistu	e / Plasti	city	r ace	ent s	Lab Data হ ক্ল and
Depth Scale (m)	Elev	Description	Graphic Log	lber	ed	'N' Value	on Sc	· ·	20 30				Natural ter Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	er labilization Comments
Jepth	Depth (m)		èraph	Number	Type	SPT 'N'	Elevation ((m)	 Unconfine Pocket Per 	ed enetrometer	+ Field ■ Lab	d Vane Vane	PL	\sim		He	lns L	ິຊີສັ GRAIN SIZE DISTRIBUTION (%) (MIT)
-0	186.7	GROUND SURFACE		╞┤	<u> </u>	S.			80 120) 16	60	10	20	30			GR SA SI CL
-	185.9	FILL, silty sand, trace gravel, trace clay, compact, dark brown, moist		1	SS	11	- 186 -					ο			_PID: 0 FID: 0		<u>SS1 Analysis:</u> M&I, PAH, PCB
-1	0.8	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, stiff to hard, brown, moist (GLACIAL TILL)		2	SS	17	-						C		_PID: 0 FID: 0		
-2				3	SS	14	185 -						0		PID: 0 FID: 0		<u>SS3 Analysis:</u> M&I, PAH, PCB
- 3				4	SS	40	184 -			$\left.\right\rangle$		0			PID: 0 FID: 0		
-				5	SS	36	- 183 -					0			_PID: 0 FID: 0		
4 -							-										
-5				6	SS	87	182 -					0			PID: 0 FID: 0		<u>SS6 Analysis:</u> BTEX, VOC, PHC
- -6							181 –										
-		grey below		7	SS	76 / 275mm	- 180 –					0			PID: 0 FID: 0		
-7 -					SS /	<u>50 /</u>	- 170-					0			_PID: 0 FID: 0		
-8				8		, 507 100mm	179 – -								FID: 0		SS8 Analysis: BTEX, VOC, PHC, .pH
- -9	177.4			9	SS	50 /	178-					0			PID: 0		· · ·
	9.3	END OF BOREHOLE		<u>ب</u>		125mm	}								Ę <u>FID: 0</u> _J		
		Borehole was dry and open upon completion of drilling. 50 mm dia. monitoring well installed.	I						<u>Date</u> Jun 23, 2			EVEL READI r <u>Depth (m)</u> 8.4	Elev	<u>ation (n</u> 178.3	<u>1)</u>		

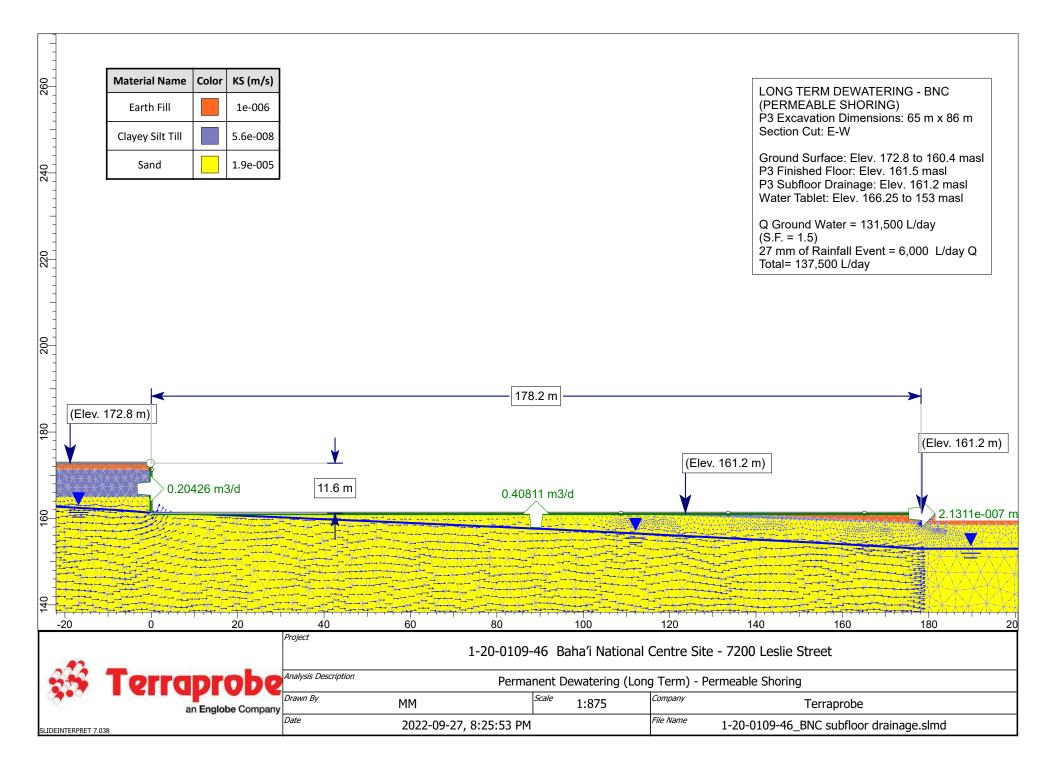
oje	ect N	lo. : 1-20-0109-01	Clie	nt	: N	lation	al Spir	tual Assem	bly of the Ba	aha'i	of Canada	a		Origir	ated by:DH
ate	star	ted : June 6, 2022	Proj	ect	: 7	200 8	x 7290	Leslie Stre	et, Baha'i N	ation	al Centre			Com	piled by:HR
nee	et No	o. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario						Che	cked by:MM
siti	on :	: E: 630488, N: 4852665 (UTM 17T)						n : Geodeti	с						-
g ty		Track-mounted				Drilling	Method	: Solid st	em augers						
		SOIL PROFILE			Sampl		ae	Penetration Te (Blows / 0.3m)	\geq		Moisture /	Plasticity	e.	nt	Lab Data
	Elev Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)		0 30 40 ar Strength (kPa) ➡ Field \ etrometer ■ Lab Va		Plastic Nat Limit Water (PL M 10 20	ural Liquid Content Limit	Headspace Vapour (ppm)	Instrument Details	Balance Balanc
ł	186.7	GROUND SURFACE	/ 🗱			0		40 0	0 120 160	-+) 30			GR SA SI C
	185.9	FILL, silty sand, trace gravel, trace clay, compact, brown, moist		1	SS	13	- 186 -				0		_PID: 0 _FID: 0		<u>SS1 Analysis:</u> M&I, PAH, PCB
	0.8	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, stiff, brown, moist		2	SS	9					0		_PID: 0 FID: 0		
	1.5	CLAYEY SILT to SILT AND CLAY, some sand to sandy, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		3	SS	15	185 -				0		_PID: 0 FID: 0		<u>SS3 Analysis:</u> M&I, PAH, PCB
				4	SS	26	184 -					0	PID: 0 FID: 0		
				5	SS	32						0	_PID: 0 FID: 0		
							183 -								
				6	SS	46	182 -				0		PID: 0 FID: 0		<u>SS6 Analysis:</u> BTEX, VOC, PHC
							181 -						_		
		grey below		7	SS	26	-				0		_PID: 0 FID: 0		
							180 -								
				8	SS	40	179 -				0		_PID: 0 FID: 0		<u>SS8 Analysis:</u> BTEX, VOC, PHC
							178 -			\setminus					
	177.3			9	SS	50 / 150mm					0		_PID: 0 FID: 0		

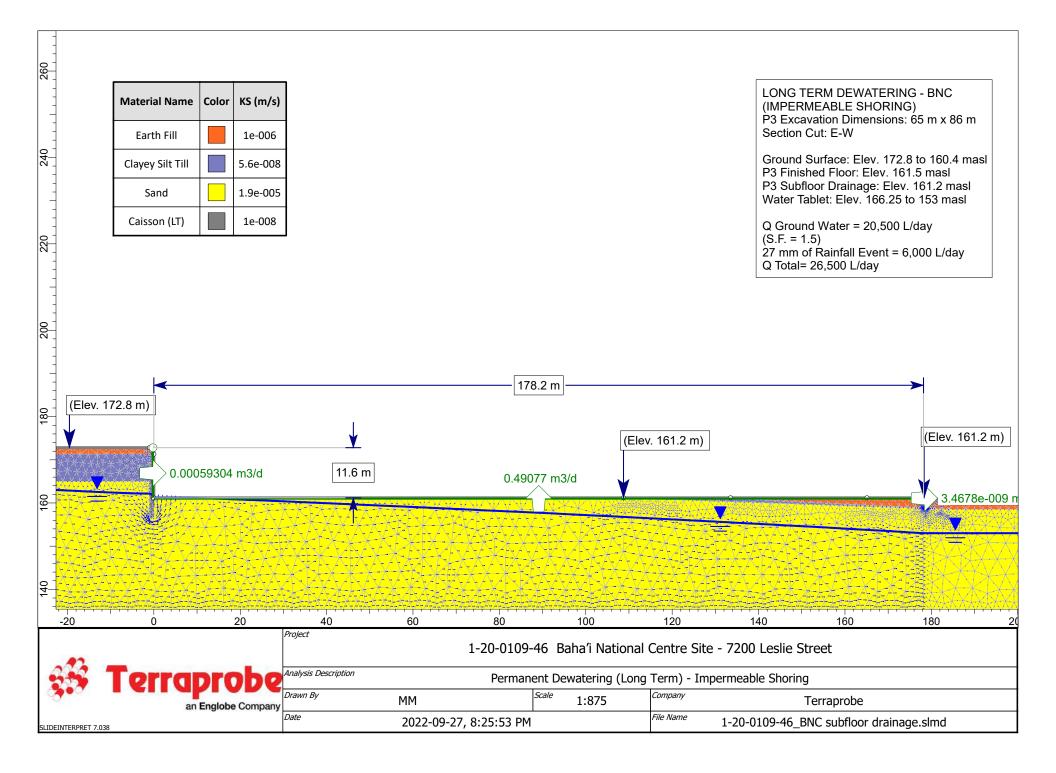
Borehole was dry and open upon completion of drilling.


50 mm dia. monitoring well installed.




ject	No. : 1-20-0109-01	Clie	nt	: N	lation	al Spiri	tual Assembly	of the Baha	a'i of Canada		Origir	nated by :DH
e sta	arted : June 6, 2022	Proj	ect	: 7	200 8	x 7290	Leslie Street, E	Baha'i Natio	onal Centre		Com	piled by :HR
et N	No. :1 of 1	Loc	atio	n : T	hornh	nill, Ont	ario				Che	cked by :MMT
tion	: E: 630523, N: 4852658 (UTM 17T)				Elevati	on Datur	m : Geodetic					
ype	: Track-mounted				Drilling	Method		-				
	SOIL PROFILE			SAMP		Scale	Penetration Test Value (Blows / 0.3m)	es	Moisture / Plasticit	y g_	s ut	Lab Data হ ল and
<u>Ele</u> Depi	oth Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	Undrained Shear Stree O Unconfined	+ Field Vane	Limit Water Content	Headspace (pom)	Instrument Details	Distribution (%)
(m) 185 .			2		SPT	Ele	Pocket Penetrometer 40 80	er ∎ Lab Vane 120 160	10 20 30			(MIT) GR SA SI C
	75mm TOPSOIL	_/ 🗱	1	SS	20	185 -			0	PID: 0		
	FILL, clayey silt, some sand, trace gravel, trace rootlets, trace organics, firm to very stiff, dark brown to brown, moist			00	20	100 -				FID: 0		<u>SS1 Analysis:</u> M&I, PAH, PCB
			2	SS	11	-			0	_PID: 0 _FID: 0		SS2 Analysis:
						184 -						M&I, PAH, PCB
			3	SS	7	_			0	_PID: 0 FID: 0		
									Ŭ	FID: 0		
						183 -				PID: 0		
			4	SS	10	_			0	FID: 0		
			5	SS	6	182 -			•	PID: 10 FID: 0		SS5 Analysis:
						_						BTEX, VÓC, PHC
						181 -						
										PID: 0		
			6	SS	13				0	FID: 0		
						180 -						
												ν. • •
179. 6.	1											
0.	sand to sandy, trace gravel, very stiff,	e ø	7	SS	18	179 -			ρ	PID: 0 FID: 0		
	brown, moist (GLACIAL TILL)		_									•
						178 -						•
177. 7.	.7 ^{.6} SAND, trace to some silt, trace clay, dens	[]] /] e	1									
	to very dense, brown, moist		8	SS	44	-			0	PID: 0 FID: 0		<u>SS8 Analysis:</u> BTEX, VOC, PHC
						177 -						
						-						
<u>175.</u> 9.	.9		9	SS	50 / 125mm	176 -			0	_PID: 0 FID: 0		


Borehole was dry and open upon completion of drilling.


50 mm dia. monitoring well installed.

HYDROGEOLOGICAL STUDY BAHÁ'Í NATIONAL CENTRE SITE 7200 LESLIE STREET THORNHILL, ONTARIO

Prepared for: National Spiritual Assembly of the Bahá'í's of Canada 7200 Leslie Street Thornhill, ON L3T 6L8

Attention: Mr. Mehran Anvari

File No. 1-20-0109-46 Issued: November 7, 2022

© Terraprobe Inc.

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Terraprobe Inc. Hamilton – Niagara Central

 903 Barton Street, Unit 22
 220 Bay

 Stoney Creek, Ontario L8E
 Barrie, 0

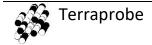
 (905) 643-7560 Fax: 643-7559
 (705) 73

 www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369 probe ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 water sources may be at risk from quantity or quality threats, to assess the level of risk, and to put in place measures to eliminate or manage the threat.


Based on the review of MECP's Source Protection Information Atlas and Toronto and Region Conservation Authority (TRCA) mapping (Accessed: October 21, 2022), the following information was obtained related to the subject property:

Associated Policy Area	Applicability
Conservation Authority	Toronto and Region Conservation Authority
Source Protection Area	Toronto Source Protection Area
Watershed	Don River Watershed
Subwater Shed	German Mills Creeks – Don River Subwatershed
MECP District	City of Markham
TRCA Regulated Area	Yes
Wellhead Protection Area	No
(WHPA)	
Significant Groundwater	No
Recharge Area (SGRA).	
Highly Vulnerable Aquifer	Yes ; score is 6 on the western portion of the property
(HVA)	res, score is o on the western portion of the property
Wellhead Protection Areas	
(WHPA - Q) or Recharge	No
Management Area	
Intake Protection Zone (IPZ)	No
Intake Protection Zone Q (IPZ-Q)	No
Oak Ridges Moraine (ORM)	No
Niagara Escarpment Plan Area	No
Greenbelt Protection Act Area	No

Refer to Appendix A for associated regulatory mapping details.

3.3 Permit to Take Water (PTTW) Section 34 of the Ontario Water Resource Act

The Online MECP PTTW Database was reviewed (Accessed: October 21, 2022) for any active PTTW application records within a 1.0 km radius of the Site. The records review indicates that there is one (1) active PTTW located at a distance of 0.27 km from the Site, and is registered by Bayview Country Club Limited (Permit No.: 4288-BM6Q8S). This water taking is reportedly used for commercial purpose (Golf Course Irrigation).

5.0 RESULTS OF SUBSURFACE INVESTIGATION

The field investigation was conducted on May 24 to 27, 30 & 31, and June 1, 2, 6 and 8, 2022, and consisted of drilling and sampling a total of twenty-six (26) boreholes, extending to depths varying from 2.0 to 17.2 m below grade, as follows:

- Borehole BH1 to BH7 were advanced within a close proximity to the National Centre
- Borehole BH8 to BH10, and BH11 to BH14 were advanced in close proximity to the proposed Visitor Centre and Temple, respectively
- Borehole BH15 was not advanced due to site access limitation
- Boreholes BH16 to BH18 were advanced within close proximity to the proposed heritage building additions and new restroom buildings
- Boreholes BH19 to BH23 were advanced for the proposed parking / pavement areas
- Boreholes BH24 to BH27 were advanced as part of the environmental investigation

The borings were drilled by a specialist drilling contractor using a track/truck-mounted drill rig power auger and mud rotary drilling techniques and sampled at regular intervals with conventional 50 mm diameter split barrel samplers when the Standard Penetration Test (SPT) was carried out (ASTM D 1586). The soil samples were observed and recorded by a member of our field engineering staff, who logged the borings and examined the samples as they were obtained. All samples obtained during the investigation were sealed into plastic jars and transported to our testing laboratory for detailed inspection and testing

The fieldwork (drilling, sampling, and testing) was observed full time and recorded by a Terraprobe filed staff, who logged the boring and examined the samples as they were obtained. To measure the groundwater level and investigate the quality of groundwater, ten (10) boreholes (BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27) were instrumented with monitoring well as a part of the current investigation. The monitoring well consisted of a 50 mm diameter PVC screen with a length of PVC riser pipe, 10-ft slotted screen. Upon installation, an elevation survey of the monitoring wells relative to a local datum was completed so that relative groundwater flow direction can be assessed.

The borehole and monitoring well locations are provided on Figure 2.

5.1 Local Site Setting

Based on the review of the geotechnical report (File No. 1-20-0109-01); the subsurface soil stratigraphy encountered during the drilling investigation is summarized in the subsections below.

The stratigraphy is based on the borehole findings, as well as the geotechnical laboratory testing conducted on selected representative soil samples. The stratigraphic boundaries indicated on the Borehole Logs are inferred from non-continuous samples and observations of drilling resistance and typically represent a transition from one soil type to another. These boundaries should not be interpreted to

represent exact planes of geological change. The subsurface conditions have been confirmed in a series of widely spaced boreholes and will vary between and beyond the borehole locations.

5.1.1 Surficial Topsoil/ Earth Fill Material

A surficial layer of asphaltic concrete about 75 mm (thick) was encountered in Boreholes 6 & 7 and was underlain by an aggregate layer of about 115 and 90 mm (thick), respectively.

Topsoil, predominantly consisted of a sandy silt/sand and gravel matrix with organics, with thickness ranging from about 25 to 320 mm was encountered in all other boreholes. Underlying the surficial topsoil, a layer of earth fill was encountered in all boreholes, and extended to a depth of about 0.8 (BH2) and 6.1 m (BH27) below grade. The earth fill material consisted of clayey silt, with some sand and trace gravel on the western portion, and sandy silt with trace to some amounts of clay and trace amounts of gravel on the eastern portion adjacent German Mills Creek floodplain.

5.1.2 Native Soils

Undisturbed native soil deposits underlie the topsoil / earth fill deposits, which extended to the full depth of investigation are as follows:

- Clayey Silt to Silt and Clay Glacial Till: A layer of undisturbed native clayey silt to silt and clay till deposit with variable amounts of sand (some sand to sandy) and trace amounts of gravel was encountered beneath the earth fill/surficial layers in boreholes BH3, BH6 to BH14, and BH23 to BH27 at depths varying from about 0.2 m (BH6) to 6.1 m (BH27) and extended to depths varying from about 2.3 m (BH3) to about 13.7 m (BH4). In boreholes BH4 & BH5 the clayey silt to silt and clay till was encountered underlying native sand and sandy silt to silt and sand till, respectively. Layers of sand were noted in the clayey silt to silt and clay till. The in-situ moisture contents of the clayey silt to silt and clay till samples indicated a moist condition.
- Sandy Silt to Silt and Sand Till: Undisturbed native sandy silt to silt and sand deposit with trace to some clay and trace amount of gravel was encountered in borehole BH5 beneath the earth fill at 1.5 m below grade. A layer of sand interrupts the till deposit from 2.3 m to 4.6 m below grade, the sandy silt to silt and sand till extends from 4.6 m to 9.1 m below grade. The in-situ moisture contents of the sandy silt to silt and sand till samples indicated a moist condition.
- Clayey Silt to Clay and Silt: Undisturbed native clayey silt to clay and silt deposit with trace to some sand and trace amounts of gravel was encountered beneath the clayey silt to silt and clay till layers in boreholes BH4, BH6, BH7, and BH13 at depths varying from about 4.6 m (BH6 & BH13) to 13.7 m (BH4) and extended to depths varying from about 7.6 m (BH6 & BH13) to about 17.1 m (BH4). The in-situ moisture contents of the sandy silt to sand and silt till samples indicated a moist condition.
- Sand: native sand deposit with trace to some silt and trace amounts of clay was encountered beneath the various layers in boreholes BH1 to BH9, BH11 to BH22, and BH27 at depths varying from about 0.8 m (BH19 to BH22) to 9.1 m (BH7) and extended to the full depth of investigation

where encountered, with the exception of boreholes BH4 & BH5 where the sand terminates at 2.3 and 4.6 m below grade, respectively. The in-situ moisture contents of the sandy silt to sand and silt till samples indicated a moist to wet condition.

The detailed stratigraphic conditions are presented on the accompanying borehole logs provided in **Appendix C**. A subsurface profile of the Site is provided in **Figure 5**. Characterization of the various soil types, including grain size analysis, was conducted and is presented in **Appendix D**. Additional information pertaining to soil stratigraphy is discussed in the geotechnical report by Terraprobe under a separate cover (**File No. 1-20-0109-01**).

5.2 Monitoring Well Installation

Monitoring wells were installed in ten (10) boreholes (BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27) to allow for collection of the groundwater level and to investigate the groundwater quality. The monitoring wells were constructed using 50-mm diameter PVC riser pipes and screens, which were installed in each of the selected geotechnical boreholes in accordance with Ontario Regulation (O. Reg.) 903. Filter sand was placed around the well screen to approximately 0.6 m above the top of the screen. The wells were then backfilled with bentonite to approximately 0.3 m below the ground surface. All monitoring wells were surveyed using an R10 Trimble GPS relative to a geodetic datum. The details are provided below:

	Well	Ground Surface	Top of	Screen	Bottom	of Screen	Screened Geological
Well ID	Diameter (mm)	Elevation (masl)	Depth (mbgs)	Elev. (masl)	Depth (mbgs)	Elev. (masl)	Units (Native)
BH3	50	163.69	10.67	153.02	13.72	149.97	Sand
BH4	50	172.33	6.1	166.24	9.14	163.19	Clayey Silt (Till)
BH8	50	175.81	4.57	171.23	7.62	168.19	Sand
BH11	50	176.60	5.79	170.81	8.84	167.76	Sand
BH 14	50	179.10	6.1	173	9.14	169.96	Sand
BH18	50	157.11	4.57	152.54	7.62	149.49	Sand
BH24	50	177.10	3.05	174.05	6.1	171	Clayey Silt (Till)
BH25	50	186.69	6.1	180.6	9.14	177.55	Clayey Silt (Till)
BH26	50	186.74	6.1	180.64	9.14	177.6	Clayey Silt (Till)
BH27	50	185.33	6.1	179.23	9.14	176.18	Sand

Note: masl: meters above sea level, mbgs: meters below ground surface

Additional details of the monitoring well installation is presented on the enclosed borehole logs provided in **Appendix C**.

5.3 Groundwater Monitoring

The groundwater elevations were monitored in all ten (10) monitoring wells ((BH3, BH4, BH8, BH11, BH14, BH18, BH24 to BH27). A groundwater measurement was collected on June 22, 2022 (after the well development-stabilized water levels). The groundwater elevations in the monitoring wells are provided below:

		June 22, 2022			
Well ID	Ground Surface Elevation (masl)	Groundwater Depth (mbgs)	Groundwater Elevation (masl)		
BH3	163.7	10.7	153.0		
BH4	172.3	6.1	166.3		
BH8	175.8	3.1	172.8		
BH11	176.6	Dry	Dry		
BH 14	179.1	Dry	Dry		
BH18	157.1	4.8	152.3		
BH24	177.1	Dry	Dry		
BH25	186.7	7.7	179.0		
BH26	186.7	7.3	179.5		
BH27	185.3	Dry	Dry		

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the above groundwater level recordings, it is noted that groundwater level at the site varies from $179.47 \pm \text{masl}$ to $152.3 \pm \text{masl}$ across the property.

The regional and local groundwater flow direction in the overburden appears to be east and southeast towards German Mills Creek tributary and corresponds to the local topography of the Site. The local groundwater flow direction may fluctuate seasonally depending on the magnitude of precipitation and surface runoff, which will affect infiltration of surface water in particular at times such as significant snowmelt and rainfall events. In order to capture the seasonal groundwater fluctuations and flow patterns at the Site, additional groundwater monitoring is required. The groundwater elevations contour and flow direction map is provided on **Figure 4**.

The monitoring wells installed at the Site need to be maintained in accordance with Ontario Water Resources Act, O. Reg. 903/90. When the wells are no longer required for monitoring or sampling, these wells will need to be appropriately decommissioned by a licensed well contractor as outlined in the Regulation.

5.4 Estimation of Hydraulic Conductivity

5.4.1 Estimation from Grain Size Distribution

In order to estimate the hydraulic conductivity (K) from the grain size distribution curves an excel based tool/program HydrogeoSieveXL (Devlin, J.F. 2015) is used that calculates the hydraulic conductivity

from grain size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves. This program is developed by J.F Devlin, Department of Geology, University of Kansas (Developed April 29, 2014, most recent update September, 2016). HydrogeoSieveXL presents the completed data table, a grain size distribution curve, an extensive list of grain size characteristics from which effective grain diameters are calculated, a histogram of grain size distribution presented in terms of conventional grain size classes and 15 estimates of K calculated from the formulas. Geometric and arithmetic means of the estimated K values are also calculated. The complete report for each sample is provided in along with the grain size results in **Appendix D**. The results of the estimates are summarized below:

Borehole No./Sample ID	Sampling Depth (mbgs)	Sampling Elevation (masl)	Soil Description (Native)	Estimated Hydraulic Conductivity (m/s) (Geometric Mean)
Borehole 2, Sample 3	1.8	159	SAND, trace silt, trace clay	1.9 x 10 ⁻⁵
Borehole 4, Sample 6	4.8	167.5	CLAYEY SILT TILL, sandy, trace gravel	2.2 x 10 ⁻⁹
Borehole 5, Sample 8	7.7	165.2	SILT AND SAND TILL, trace to some clay, trace gravel	6.3 x 10 ⁻⁹
Borehole 9, Sample 5	3.3	172.7	SILT AND CLAY TILL, some sand, trace gravel	1.4 x 10 ⁻⁹
Borehole 11, Sample 11	12.3	164.3	SAND, trace to some silt, trace clay	5.4 x 10 ⁻⁶
Borehole 13, Sample 6	4.8	173.3	CLAY AND SILT, trace sand	8.9 x 10 ⁻¹⁰

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the grain size distribution analysis, the hydraulic conductivity of the cohesionless sand deposit is estimated in order of 10^{-5} to 10^{-6} m/s. Moreover, the hydraulic conductivity of the silt and clay glacial till is estimated in order ranging from 10^{-9} m/s to 10^{-10} m/s.

5.4.2 Estimation from In-situ Hydraulic Testing

The hydraulic conductivity was also determined based on single well response tests (Bail Tests), as per the hydrogeological investigation completed on all selected three (3) monitoring wells (BH3, BH4 and BH8). The monitoring wells were developed in advance of the testing event, which involves the purging and removal of groundwater from the monitoring wells to remove remnants of clay, silt and other debris introduced into the monitoring well during construction and to induce the flow of formation groundwater through the well screens, thereby improving the transmissivity of the subsoil strata formation at the well screen depths. The Solinst Dataloggers (pressure transducers) were programmed to record the water levels at one (1) second of the interval throughout the tests. The data from the tests were analyzed using the

Bouwer and Rice method (1976) included in the Aquifer Test v.7 software package. The results of the analysis are presented in **Appendix E**. The hydraulic properties of the strata applicable to the Site are as follows:

Monitoring Well ID	Top of Well Screen Elevation (masl)	Bottom of Well Screen Elevation (masl)	Screened Geological Units	Hydraulic Conductivity (m/s)
BH3	153.02	149.97	SAND, trace to some silt, trace clay	8.2 x 10 ⁻⁶
BH4	166.24	163.19	SILT AND CLAY, sandy, trace gravel (Till)	7.0 x 10 ⁻⁹
BH8	171.23	168.19	SILT AND CLAY, sandy, trace gravel (Till)	5.6 x 10 ⁻⁸

Note: masl: meters above sea level, mbgs: meters below ground surface

Based on the single well response tests, the hydraulic conductivity of the native sand is estimated in order of 10^{-6} m/s and the glacial till in order ranging from 10^{-8} to 10^{-9} m/s.

5.4.3 Estimation from Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Soil Unit	Estimated Hydraulic Conductivity Range (m/s)
Earth Fill	10-6
Sand	10-2 - 10-5
Silt and Clay Glacial Till (Native)	10 ⁻⁶ - 10 ⁻¹²

Based on the analyses, the hydraulic conductivity calculated from the single well response testing and grain size analyses are consistent with the published values associated with the geological material tested.

5.5 Groundwater Quality

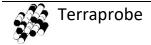
One (1) unfiltered groundwater sample was collected by Terraprobe and analyzed by a Canadian laboratory accredited and licensed by the Standards Council of Canada and or Canadian Association for Laboratory Accreditation. The sample was collected directly from monitoring well BH4 on February 24, 2022. The monitoring well BH4 was developed and purged prior to sample collection The sample was compared to the following:

- Regional Municipality of York Bylaw No. 2011-56 Table 1 Limits for Sanitary Sewer Discharge
- Regional Municipality of York Bylaw No. 2011-56 Table 2 Limits for Storm Sewer Discharge

and cover as mature forest (0.2). The infiltration factors for the post-development conditions were considered the same as the pre-development conditions.

Based on the above information, a conceptual model of groundwater flow and water balance was developed. A water balance was conducted for the post-development conditions for the entire Site, using the proposed land use statistics information and property development plan provided in the client's email dated September 19, 2022. The post-development water balance accounts for hard-surfaced areas created by buildings and pavements. The post-development conditions will result in a surplus of water available from run-off. The surplus of water available from roof runoff can be used for infiltration into the shallow groundwater system.

The following assumptions were applied for the pre-and post-development water balance:


- No infiltration will occur beneath the hard surface areas, including asphalt/concrete surfaced parking areas and walkways or driveways.
- It is assumed that there will be 10% of evaporation in hard-surface areas/impervious surfaces, and the remaining will contribute to run-off.
- Run-off from parking areas will be directed towards storm sewers and is not included in the infiltration calculations.
- Infiltration rates in open areas of the property (landscaped areas) will occur at rates similar to those for pre-development conditions.
- There will be no infiltration beneath hard-surface areas including, building, pavements, and walkways.

6.1.2 Water Balance Analysis:

Based on the Climate data, annual precipitation of 861 mm/yr., is considered and actual evapotranspiration of 564 mm/yr. There is a water surplus of 297 mm/yr., occurring at the Site that can either infiltrate into the subsurface or go as a run-off. As indicated above, the rate of infiltration was based on the Table 3.1, MOE SWMPD Manual (2003) and is considered as 149 mm/yr. The water balance for pre-development conditions for the entire Site is summarized in the Table below:

Summarv of	Site Statistics	(Pre-development)

Land Use	Area (ha)	Area (m²)
Building Footprint/Envelope	0.108	1,076.9
Hardscape/Impervious	0.243	2,427.0
Softscape/Pervious (Undeveloped Area)	8.119	81,192.9
Total	8.47	84,696.8

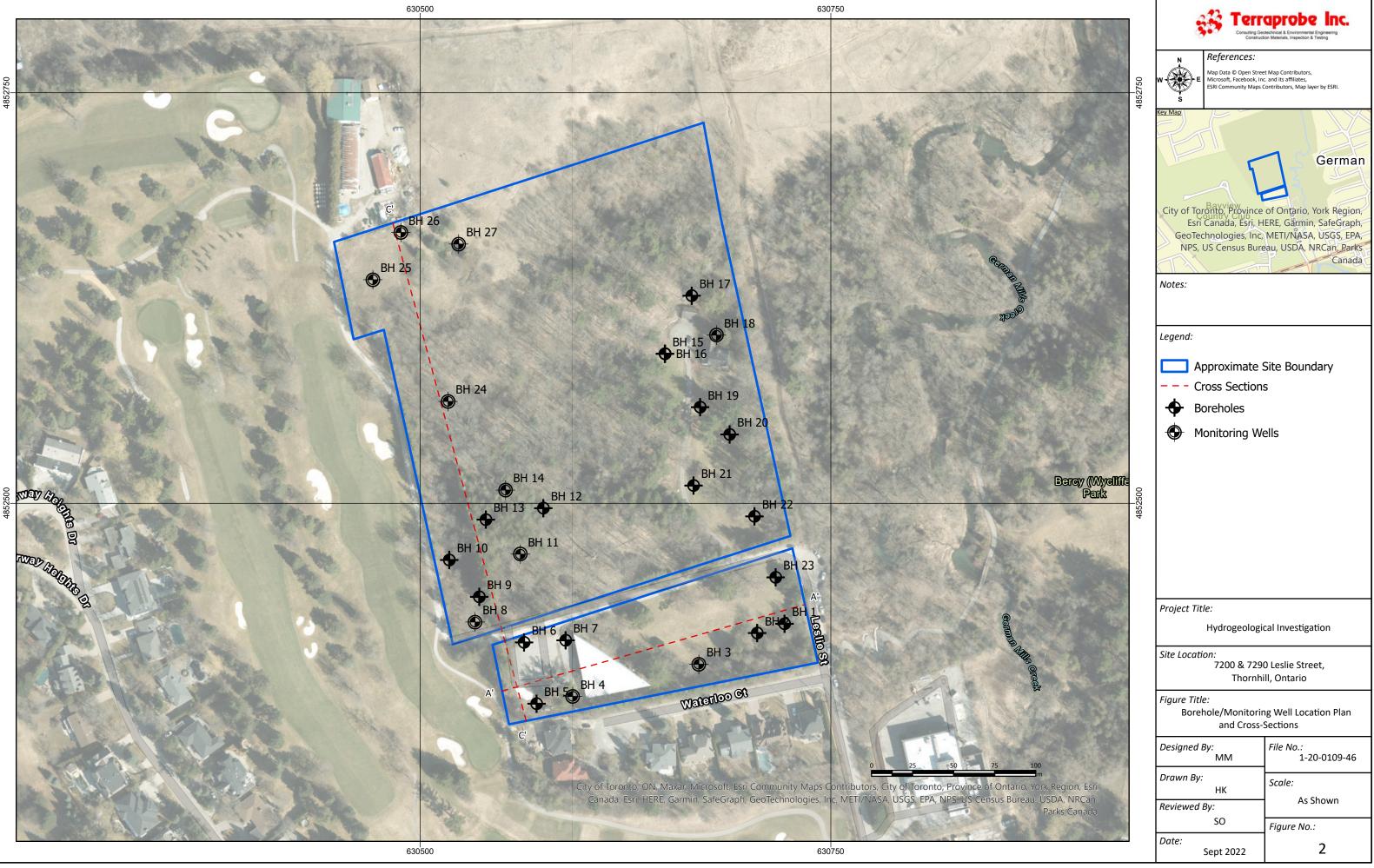
Pre- Development Water Balance (Entire Site)

	Area (m²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
Proposed Development	84,696.8	72,924	45,793	302	12,057	14,772

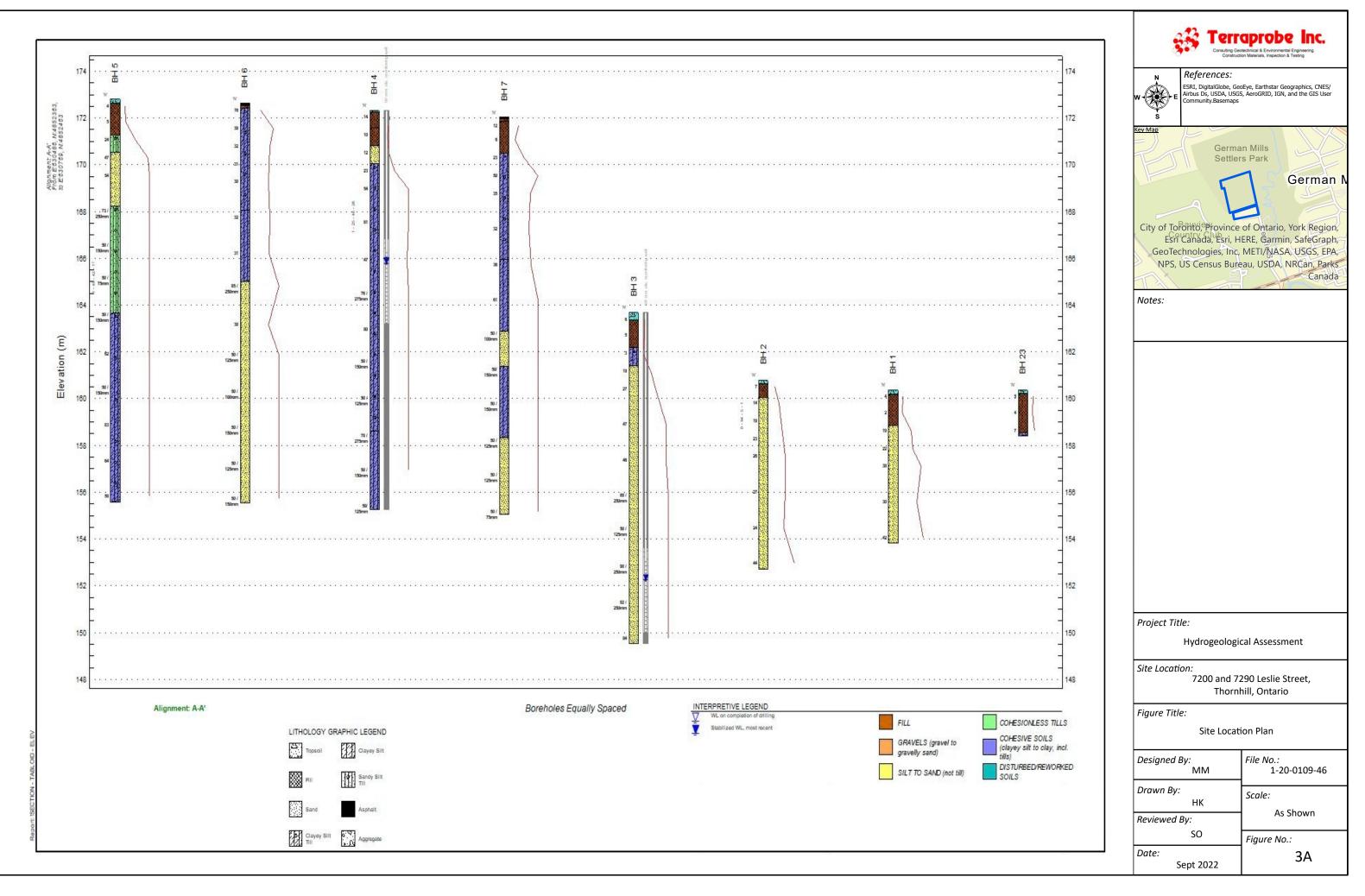
Development of an area affects the natural water balance of the Site. The most significant difference is the addition of impervious surfaces as a type of surface cover. Impervious surfaces prevent the infiltration of water into the soils. Net effect of the construction of impervious surfaces is that most of the precipitation that falls onto the impervious surfaces becomes surplus water and direct runoff. The natural permeability of the ground surface changes by reducing the currently undeveloped land/ open space and vegetation at the Site and replacing part of these areas with less permeable/ impervious surfaces such as building roofs, roads, and driveways. The development will result in an increased volume of runoff and a reduction in infiltration. Pre-development conditions result in approximately 12,057 m³ of water available for infiltration to the groundwater system, as mentioned in the above table.

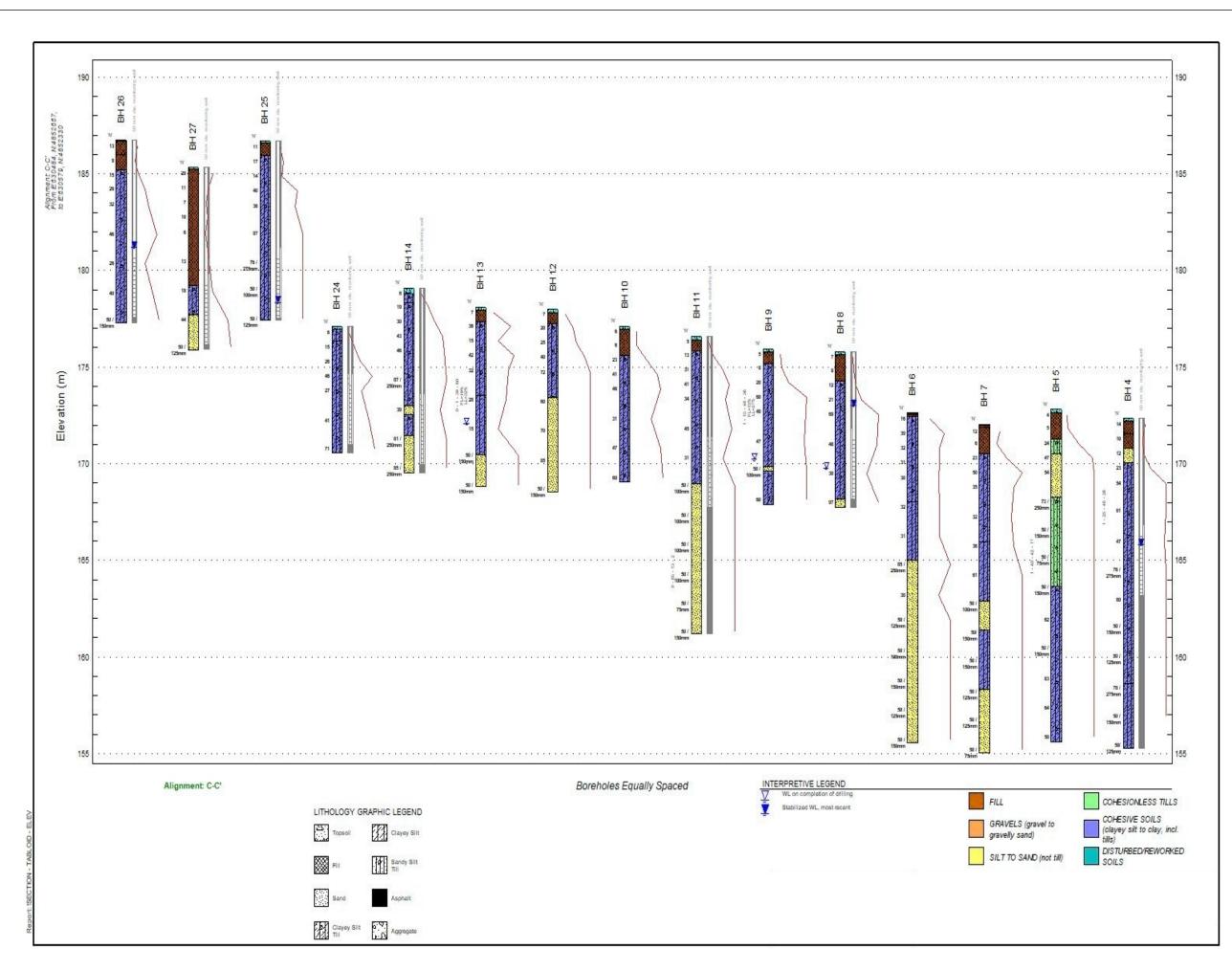
Based on the post-development plan, a summary of proposed land use and water balance calculations for the post-development are provided below:

Land Use	Area (ha)	Area (m²)
Building Footprint/Envelope	0.445	4,447
Hardscape/Impervious	0.657	6,570
Softscape/Pervious (Undeveloped Area)	7.368	73,679.8
Total	8.47	84,696.8


Summary of Site Statistics (Post-development)

Post- Development Water Balance without Mitigation (Entire Site)


	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Evaporation (m ³)	Infiltration (m ³)	Run-Off (m ³)
Proposed Development	84,696.8	72,924	41,555	949	10,941	19,479


In the post-development, the water balance calculations show that development has the potential to reduce the natural infiltration by $1,116 \text{ m}^3/\text{yr}$, and to increase the runoff by $4,706 \text{ m}^3/\text{yr}$. Conservation Ontario Guidelines (Conservation Ontario, 2013) suggest a target of 80% of the predevelopment infiltration being maintained in the post-development conditions. Calculations for the Site are indicative of the post-development infiltration being at a level of about 91 % of the pre-development infiltration. As such, post-development infiltration exceeds Conservation Ontario required target to maintain 80% of the predevelopment infiltration in the post-development conditions.

The water balance calculations are provided in **Appendix G**.

Y:\Shared\CA\Terraprobe\Brampton\1-Project Files\2020\1-20-0109-7200 & 7290 Leslie St., Thornhill\46-Hydrogeological Study\A. Dwgs, Logs\PDF

🖧 Terraprobe Inc. References: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/ Airbus Ds, USDA, USGS, AeroGRID, IGN, and the GIS User Community.Basemaps w-Key Map German Mills Settlers Park German N City of Toronto, Province of Ontario, York Region, Esri Canada, Esri, HERE, Carmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, NRCan, Parks Canada Notes: Project Title: Hydrogeological Assessment Site Location: 7200 and 7290 Leslie Street, Thornhill, Ontario Figure Title: Site Location Plan File No.: Designed By: MM 1-20-0109-46 Drawn By: Scale: ΗК As Shown Reviewed By: SO Figure No.: Date: 3B Sept 2022

Appendix C Downstream Storm Sewer Capacity Analysis & Stormwater Management Calculations

SCS consulting group Itd			B	BAHAI NA	ATIONAI	L CENTR	E (7200 L	r Storm E ÆSLIE S' FSP RKHAM.	TREET)	EXISTIN	G STOR	M DE
Rainfall Intensity (i) =	Α		A=	1045.41								
	$(\mathbf{T_c} + \mathbf{B})^{\mathbf{c}}$	I	B=	4.9								
Starting T _c (min)=	10		c=	0.83								
LOCATION					5 Y	EAR				FYTEDN	AL FLOWS	
											AL FLOWS	
	MAINTENA	NCE HOLE	5-YEAR	RUNOFF		ACCUM.	RAINFALL	ACCUM.				ACCUM
STREET			5-YEAR AREA	RUNOFF COEFF.	"AR"		RAINFALL INTENSITY	ACCUM. FLOW	AREA	FLOW RATE		
STREET	MAINTENA FROM	NCE HOLE TO				ACCUM.			AREA (ha)			ACCUM FLC (m3
STREET WATERLOO COURT			AREA	COEFF.		ACCUM.	INTENSITY	FLOW		FLOW RATE	EXT. FLOW	FLC
	FROM	то	AREA (ha)	COEFF. (R)	"AR"	ACCUM. "AR"	INTENSITY (mm/hr)	FLOW (m3/s)	(ha)	FLOW RATE (l/s/ha)	EXT. FLOW (m3/s)	FLC (m3
WATERLOO COURT	FROM EX.MH1	TO EX.MH2	AREA (ha) 1.08	COEFF. (R) 0.40	" AR " 0.43	ACCUM. "AR" 0.43	INTENSITY (mm/hr) 111.06	FLOW (m3/s) 0.133	(ha) 0.000	FLOW RATE (l/s/ha) 0.000	EXT. FLOW (m3/s) 0.000	FLC (m3 0.0
WATERLOO COURT WATERLOO COURT	FROM EX.MH1 EX.MH2	TO EX.MH2 EX.MH3	AREA (ha) 1.08 0.69	COEFF. (R) 0.40 0.40	" AR " 0.43 0.28	ACCUM. "AR" 0.43 0.71	INTENSITY (mm/hr) 111.06 108.93	FLOW (m3/s) 0.133 0.214	(ha) 0.000 0.000	FLOW RATE (l/s/ha) 0.000 0.000	EXT. FLOW (m3/s) 0.000 0.000	(m3 0.0

ESIGN

Project: BAHAI NATIONAL CENTRE (7200 LESLIE STREET) EXISTING STORM DESIGN

Project No. 2004

Date: 15-Dec-23

Designed By: J.L./P.C.

Reviewed By: P.C./P.G.

P:\2004 Bahai National Centre\Design\Pipe Design\Storm\[2004P-FSP-Existing Storm Design Sheet.xlsm]Design

	TOTAL FLOW							
M. EXT. .OW	TOTAL (Qdes)	LENGTH	SLOPE	PIPE DIAMETER	FULL FLOW CAPACITY	FULL FLOW VELOCITY	TIME OF CONC.	ACCUM. TIME OF CONC.
n3/s)	(m3/s)	(m)	(%)	(mm)	(m3/s)	(m/s)	(min)	(min)
000	0.133	61.0	4.50	300	0.205	2.902	0.35	10.35
000	0.214	76.5	4.00	375	0.350	3.175	0.40	10.75
000	0.210	45.5	10.00	375	0.554	5.020	0.15	10.90
000	0.208	52.0	1.66	375	0.226	2.045	0.42	11.33
000	0.203	25.0	1.79	375	0.234	2.124	0.20	11.52

Hydraulic Grade Line Analysis BAHAI NATIONAL CENTRE (7200 LESLIE STREET) EXISTING STORM DESIGN FSP MARKHAM, ON

EL. FROM STREETLINE TO BASEMENT (m)= 1.90 ALLOWABLE DISTANCE FROM BASEMENT TO HGL (m)= 0.50 STARTING DOWNSTREAM HGL (if above obvert) (m) = 150.14

																								P:\2004 Bahai Nati	ional Centre\Design\Pipe	Design\Storm\[2004]	₽-FSP-Existi
LOCATION			INV	ERTS	FLOW				PIPE I	DATA					PIPE LC	OSS CALCU	JLATIONS		MH LOSS CA	ALCULATIONS	TOTAL LOSS]	HYDRAULIC GRADE LI	NE	HGL	VS. BASEM	ENT SI
STREET	FROM (U/S)	TO (D/S)	U/S	D/S	TOTAL PIPE FLOW (Qdes)	PIPE DIAMETER	LENGTH	MANNING's 'n'	PIPE AREA	HYD. RAD ^{2/5}	SLOPE	Qcap.	Qdes/Qcap	L/D	f	Vf	V ² /2g	TOTAL PIPE LOSS	E MH LOSS	PIPE BEND LOSS	TOTAL LOSS	HGL (U/S)	HGL SURCHARGE ABOVE U/S OBV.	HGL (D/S)	MH TOP (U/S)	BASEMENT ELEV. (U/S)	HGI BASE (U
			(m)	(m)	(L/s)	(mm)	(m)		(m2)		(%)	(L/s)	(%)					(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(
WATERLOO COURT	EX.MH1	EX.MH2	164.695	161.950	133.3	300	61.0	0.013	0.071	0.178	4.50	205.0	0.65	203.333	0.031	1.885	0.181	1.159	0.01	0.00	1.17	164.995	0.000	162.250	168.55	166.65	1.
WATERLOO COURT	EX.MH2	EX.MH3	160.350	157.290	214.2	375	76.5	0.013	0.110	0.206	4.00	350.5	0.61	204.000	0.029	1.940	0.192	1.142	0.01	0.00	1.15	160.725	0.000	157.665	164.28	162.38	1
WATERLOO COURT	EX.MH3	EX.MH4	157.075	152.525	209.7	375	45.5	0.013	0.110	0.206	10.00	554.2	0.38	121.333	0.029	1.898	0.184	0.651	0.01	0.00	0.66	157.450	0.000	152.900	160.18	160.18	2
WATERLOO COURT	EX.MH4	EX.MH5	151.098	150.235	208.0	375	52.0	0.013	0.110	0.206	1.66	225.8	0.92	138.667	0.029	1.883	0.181	0.732	0.01	0.00	0.74	151.473	0.000	150.610	154.40	154.40	2.
WATERLOO COURT	EX.MH5	EX.HW1	150.208	149.760	203.5	375	25.0	0.013	0.110	0.206	1.79	234.5	0.87	66.667	0.029	1.842	0.173	0.337	0.04	0.00	0.38	150.583	0.000	150.135	152.15	152.15	1.

Project: BAHAI NATIONAL CENTRE (7200 LESLIE STREET) EXISTING Project No. 2004 Date: 15-Dec-23 Designed By: J.L./P.C. Reviewed By: P.C./P.G.

I DESIGN
TION
CHECK
OK

5-Year Storm Design BAHAI NATIONAL CENTRE (7200 LESLIE STREET) PROPOSED STORM DESIGN

FSP MARKHAM, ON

Project: BAHAI NATIONAL CENTRE (7200 LESLIE STREET) PROPOSED STORM DESIGN

Rainfall Intensity (i) =	Α
	(T _c +B) ^c

A= 1045.41 B= 4.9 c= 0.83

Starting T_c (min)= 10

Project No. 2004 Date: 26-Jan-24

Designed By: J.L./P.C.

Reviewed By: P.C./P.G.

LOCATION					5 Y	EAR				EXTERNA	L FLOWS		TOTAL FLOW			PIPE DATA	L L			
	MAINTENA	ANCE HOLE	5-YEAR	RUNOFF	"AR"	ACCUM.	RAINFALL	ACCUM.	AREA	FLOW RATE	EXT ELOW	ACCUM.	TOTAL	LENGTH	LENGTH SLOPE PIPE FULL FLOW FULL FL			FULL FLOW	TIME OF	ACCUM. TIME
STREET	FROM	то	AREA (ha)	COEFF. (R)	AK	"AR"	INTENSITY (mm/hr)	FLOW (m3/s)	(ha)	(l/s/ha)	(m3/s)	EXT. FLOW (m3/s)	(Qdes) (m3/s)	(m)	(%)	DIAMETER (mm)	CAPACITY (m3/s)	VELOCITY (m/s)	CONC. (min)	OF CONC (min)
WEST PARK+TEMPLE (PROPOSED)	TMPL	MH2	0.00	0.00	0.00	0.00	111.06	0.000	0.520	40.000	0.021	0.021	0.021	9.6	2.00	200	0.046	1.476	0.11	10.11
PRIVATE ROAD	MH2	MH3	0.00	0.00	0.00	0.00	110.39	0.000	0.000	0.000	0.000	0.021	0.021	18.4	0.50	250	0.042	0.857	0.36	10.47
PRIVATE ROAD	MH3	MH4	0.00	0.00	0.00	0.00	108.25	0.000	0.000	0.000	0.000	0.021	0.021	132.5	0.50	375	0.124	1.123	1.97	12.43
BNC BUILDING (PROPOSED)	BNC	MH4	0.00	0.00	0.00	0.00	111.06	0.000	1.150	40.000	0.046	0.046	0.046	1.6	2.00	250	0.084	1.713	0.02	10.02
PARKING LOT (PROPOSED)	PRKG	MH4	0.00	0.00	0.00	0.00	111.06	0.000	3.660	40.000	0.146	0.146	0.146	6.2	2.00	375	0.248	2.245	0.05	10.05
PRIVATE ROAD	MH4	MH5	0.00	0.00	0.00	0.00	97.95	0.000	0.000	0.000	0.000	0.213	0.213	34.4	1.60	375	0.222	2.008	0.29	12.72
LESLIE STREET	MH5	MH6	0.00	0.00	0.00	0.00	96.63	0.000	0.000	0.000	0.000	0.213	0.213	82.2	1.60	375	0.222	2.008	0.68	13.40
WATERLOO COURT	EX.MH1	EX.MH2	0.65	0.40	0.26	0.26	111.06	0.080	0.000	0.000	0.000	0.000	0.080	61.0	4.50	300	0.205	2.902	0.35	10.35
WATERLOO COURT	EX.MH2	EX.MH3	0.44	0.40	0.18	0.44	108.93	0.132	0.000	0.000	0.000	0.000	0.132	76.5	4.00	375	0.350	3.175	0.40	10.75
WATERLOO COURT	EX.MH3	MH6	0.00	0.00	0.00	0.44	106.61	0.129	0.000	0.000	0.000	0.000	0.129	16.6	10.00	375	0.554	5.020	0.06	10.81
WATERLOO COURT	MH6	EX.MH4	0.00	0.00	0.00	0.44	93.63	0.113	0.000	0.000	0.000	0.213	0.327	28.9	10.00	375	0.554	5.020	0.10	13.50
WATERLOO COURT	EX.MH4	EX.MH5	0.00	0.00	0.00	0.44	93.23	0.113	0.000	0.000	0.000	0.213	0.326	52.0	1.66	375	0.226	2.045	0.42	13.92
WATERLOO COURT	EX.MH5	EX.HW1	0.00	0.00	0.00	0.44	91.48	0.111	0.000	0.000	0.000	0.213	0.324	25.0	1.79	375	0.234	2.124	0.20	14.12

Hydraulic Grade Line Analysis BAHAI NATIONAL CENTRE (7200 LESLIE STREET) PROPOSED STORM DESIGN FSP

MARKHAM, ON

Project: BAHAI NATIONAL CENTRE (7200 LESLIE STREET) PROPOSED STORM DESIGN

Project No. 2004

EL. FROM STREETLINE TO BASEMENT (m)= 1.90 ALLOWABLE DISTANCE FROM BASEMENT TO HGL (m)= 0.50 STARTING DOWNSTREAM HGL (if above obvert) (m) = 150.14

Date:	26-Jan-24
Designed By:	J.L./P.C.
Reviewed By:	P.C./P.G.

LOCATION		LOCATION INVERTS		ERTS	FLOW	PIPE DATA							PIPE LO	SS CALCU	ATIONS		MH LOSS CA	LCULATIONS	TOTAL LOSS	н	YDRAULIC GRADE L	INE	HGL VS. BASEMENT SEPARATION					
STREET	FROM (U/S)	TO (D/S)	U/S	D/S	TOTAL PIPE FLOW (Qdes)		LENGTH	MANNING's 'n'	PIPE AREA	HYD. RAD ²⁵	SLOPE	Qcap.	Qdes/Qcap	L/D	f	Vf	$V^2/2g$	TOTAL PIPE LOSS	MH LOSS	PIPE BEND LOSS	TOTAL LOSS	HGL (U/S)	HGL SURCHARGE ABOVE U/S OBV.	HGL (D/S)	MH TOP (U/S)	BASEMENT ELEV. (U/S)	HGL TO BASEMENT (U/S)	снеск
			(m)	(m)	(L/s)	(mm)	(m)		(m2)		(%)	(L/s)	(%)					(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
WEST PARK+TEMPLE (PROPOSED)	TMPL	MH2	158.772	158.580	20.8	200	9.6	0.013	0.031	0.136	2.00	46.4	0.45	48.000	0.036	0.662	0.022	0.039	0.00	0.00	0.04	158.972	0.000	158.780	172.50	170.60	11.63	OK
PRIVATE ROAD	MH2	MH3	158.522	158.430	20.8	250	18.4	0.013	0.049	0.157	0.50	42.0	0.49	73.560	0.033	0.424	0.009	0.022	0.00	0.00	0.02	158.772	0.000	158.680	172.50	170.60	11.83	OK
PRIVATE ROAD	MH3	MH4	158.303	157.640	0.0	375	132.5	0.013	0.110	0.206	0.50	123.9	0.00	353.333	0.029	0.000	0.000	0.000	0.00	0.00	0.00	158.678	0.000	158.015	172.50	170.60	11.92	OK
BNC BUILDING (PROPOSED)	BNC	MH4	158.461	158.430	46.0	250	1.6	0.013	0.049	0.157	2.00	84.1	0.55	6.200	0.033	0.937	0.045	0.009	0.00	0.00	0.01	158.711	0.000	158.680	172.50	170.60	11.89	OK
PARKING LOT (PROPOSED)	PRKG	MH4	157.793	157.670	146.4	375	6.2	0.013	0.110	0.206	2.00	247.8	0.59	16.427	0.029	1.326	0.090	0.043	0.00	0.00	0.05	158.168	0.000	158.045	161.49	159.59	1.42	OK
PRIVATE ROAD	MH4	MH5	157.400	156.850	213.2	375	34.4	0.013	0.110	0.206	1.60	221.7	0.96	91.733	0.029	1.930	0.190	0.509	0.01	0.00	0.52	157.775	0.000	157.225	161.36	159.46	1.68	OK
LESLIE STREET	MH5	MH6	156.795	155.480	213.2	375	82.2	0.013	0.110	0.206	1.60	221.7	0.96	219.093	0.029	1.930	0.190	1.215	0.01	0.00	1.22	157.170	0.000	155.855	158.37	158.37	1.20	OK
					0.0																							
WATERLOO COURT	EX.MH1	EX.MH2	164.695	161.950	80.2	300	61.0	0.013	0.071	0.178	4.50	205.0	0.39	203.333	0.031	1.135	0.066	0.420	0.00	0.00	0.42	164.995	0.000	162.250	168.55	166.65	1.66	OK
WATERLOO COURT	EX.MH2	EX.MH3	160.350	157.290	131.9	375	76.5	0.013	0.110	0.206	4.00	350.5	0.38	204.000	0.029	1.195	0.073	0.433	0.00	0.00	0.44	160.725	0.000	157.665	164.28	162.38	1.66	OK
WATERLOO COURT	EX.MH3	MH6	157.078	155.420	129.1	375	16.6	0.013	0.110	0.206	10.00	554.2	0.23	44.213	0.029	1.169	0.070	0.090	0.00	0.00	0.09	157.453	0.000	155.795	160.18	160.18	2.73	OK
WATERLOO COURT	MH6	EX.MH4	155.415	152.525	326.6	375	28.9	0.013	0.110	0.206	10.00	554.2	0.59	77.067	0.029	2.957	0.446	1.003	0.02	0.00	1.03	155.790	0.000	152.925	158.56	158.56	2.77	OK
WATERLOO COURT	EX.MH4	EX.MH5	151.098	150.235	326.1	375	52.0	0.013	0.110	0.206	1.66	225.8	1.44	138.667	0.029	2.953	0.444	1.799	0.02	0.00	1.82	152.925	1.451	151.103	154.40	154.40	1.48	OK
WATERLOO COURT	EX.MH5	EX.HW1	150.208	149,760	324.0	375	25.0	0.013	0.110	0.206	1.79	234.5	1.38	66.667	0.029	2.934	0.439	0.854	0.11	0.00	0.96	151.103	0.521	150.140	152.15	152.15	1.05	OK

Catchment	101	Outlets to:	German Mills	Creek via Leslie		
	D		Weighted	Weighted Runoff	Weighted Runoff	Weighted Runoff
	Runoff	Area (ha)	Runoff	Coefficient (25	Coefficient (50	Coefficient (100
	Coefficient		Coefficient	Year)	Year)	Year)
Hardscape	0.90	0.02	0.03	0.04	0.04	0.04
Rooftops	0.90	0.02	0.03	0.03	0.03	0.03
Landscape	0.25	0.60	0.23	0.26	0.28	0.29
TOTA	AL	0.65	0.30	0.33	0.35	0.36
Catchment	102	Outlets to:		Creek via Leslie		
	Runoff		Weighted	Weighted Runoff	Weighted Runoff	Weighted Runoff
	Coefficient	Area (ha)	Runoff	Coefficient (25	Coefficient (50	Coefficient (100
			Coefficient	Year)	Year)	Year)
Hardscape	0.90	0.06	0.02	0.02	0.02	0.02
Rooftops	0.90	0.03	0.01	0.01	0.01	0.01
Landscape	0.25	2.45	0.24	0.27	0.29	0.30
TOT	4L	2.54	0.27	0.30	0.32	0.34
Catchment		Outlets to:	German Mills Weighted	Creek via Leslie Weighted Runoff	Weighted Runoff	Weighted Runoff
	Runoff	Area (ha)	Runoff	Coefficient (25	Coefficient (50	Coefficient (100
	Coefficient	/	Coefficient	Year)	Year)	Year)
Landscape	0.25	1.02	0.25	0.28	0.30	0.31
TOTA	AL	1.02	0.25	0.28	0.30	0.31
Catchment	104	Outlets to:	Waterloo Cou	urt STM		
			Weighted	Weighted Runoff	Weighted Runoff	Weighted Runoff
	Runoff	Area (ha)	Runoff	Coefficient (25	Coefficient (50	Coefficient (100
	Coefficient		Coefficient	Year)	Year)	Year)
Hardscape	0.90	0.14	0.11	0.12	0.12	0.12
Rooftops	0.90	0.08	0.06	0.07	0.07	0.07
Landscape	0.25	0.93	0.20	0.22	0.24	0.25
тоти		1.15	0.37	0.41	0.43	0.44
2		-	-		-	

Waterloo Court STM Total

104

TOTAL

German Mills Creek via Leslie Total

0.37

1.15

5.36

0.08

0.29

Catchment	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
104	0.37	1.15	0.37	0.41	0.45	0.47
TOT	AL	1.15	0.37	0.41	0.45	0.47

Catchment	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
101	0.30	0.65	0.05	0.05	0.05	0.06
102	0.27	2.54	0.16	0.18	0.20	0.21
103	0.25	1.02	0.06	0.07	0.07	0.08
тот	AL	4.21	0.27	0.30	0.32	0.34
Overall Total						
Overall Total	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
		Area 0.65	Runoff	Coefficient (25	Coefficient (50	Coefficient (100
Catchment	Coefficient		Runoff Coefficient	Coefficient (25 Year)	Coefficient (50 Year)	Coefficient (100 Year)

0.09

0.32

0.10

0.35

0.10

0.37

<u>2 Year</u> Storm		
IDF Parameters*	a = 651.63 t = 10 b = 3.75 c = 0.80	min
Runoff Coefficient**	C1 = 0.37 C2 = 0.27 C3 = 0.00	

Allowable Release Rate Calculation											
Outlet	Area	time	Intensity	Flow							
ID		t	i=a/(t+b)^c	Q=CiA/360							
	ha	min	mm/hr	L/s							
Waterloo Court STM	1.15	10.00	80.05	95.7							
German Mills Creek via Leslie	4.21	10.00	80.05	253.4							

* a,b,c's per City of Markham

a = 1045.41 **t** = 10

b = 4.9 **c** = 0.83

C1 = 0.37

C2 = 0.27 **C3** = 0.00

** Note: Per the Wet Weather Flow Management Guidelines (City of Toronto, 2006), when the percent imperviousness of a development site under pre-development condition is higher than 50%, the maximum value of C used in calculating the pre-development peak runoff rate is limited to 0.50.

min

Runoff Coefficient:

Allowable Release Rate Calculation												
Outlet	Area	time	Intensity	Flow								
ID		t	i=a/(t+b)^c	Q=CiA/360								
	ha	min	mm/hr	l/s								
Waterloo Court STM	1.15	10.00	111.06	132.8								
German Mills Creek via Leslie	4.21	10.00	111.06	351.6								

* a,b,c's per City of Markham

<u>10 Year</u> storm		
IDF Parameters*	a = 1331.42 t = 10 b = 5.26 c = 0.84	min
Runoff Coefficient:	C1 = 0.37 C2 = 0.27 C3 = 0.00	

Allowable Release Rate Calculation						
Outlet	Area	time	Intensity	Flow		
ID t i=a/(t+b)^c Q=CiA/360						
ha min mm/hr l/s						
Waterloo Court STM	1.15	10.00	134.94	161.4		
German Mills Creek via Leslie	4.21	10.00	134.94	427.2		

* a,b,c's per City of Markham

25 Year storm

IDF Parameters*	a = 1817.88 t = 10 b = 6.22 c = 0.87	min
Runoff Coefficient:	 C1 = 0.41 C2 = 0.30	

Allowable Release Rate Calculation						
Outlet Area time Intensity Flow						
ID t i=a/(t+b)^c						
ha min mm/hr l/s						
Waterloo Court STM	1.15	10.00	161.00	192.5		
German Mills Creek via Leslie	4.21	10.00	161.00	560.7		

* a,b,c's per City of Markham

50 Year storm	
IDF Parameters*	a = 1918.97 t = 10 min b = 6 c = 0.86
Runoff Coefficient:	C1 = 0.45 C2 = 0.32

Allowable Release Rate Calculation						
Outlet	Area	time	Intensity	Flow		
ID		t	i=a/(t+b)^c	Q=CiA/360		
	ha	min	mm/hr	l/s		
Waterloo Court STM	1.15	10.00	176.82	211.4		
German Mills Creek via Leslie	4.21	10.00	176.82	671.8		

* a,b,c's per City of Markham

100 Year storm

IDF Parameters*

a = 2167.43	
t = 10	min
b = 6.03	
c = 0.86	
C1 = 0.47	

Runoff Coefficient**

C I	=	0.47
C2	=	0.34

Allowable Release Rate Calculation					
Outlet	Area	time	Intensity	Flow	
ID t i=a/(t+b)^c Q=CiA/360					
ha min mm/hr l/s					
Waterloo Court STM	1.15	10.00	199.39	298.0	
German Mills Creek via Leslie	4.21	10.00	199.39	789.1	

* a,b,c's per City of Markham

Catchment	201	Outlets to:	German Mills Cre	ek via Leslie		
	Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
Rooftops	0.90	0.05	0.01	0.01	0.01	0.01
Permeable Pavement	0.55	0.08	0.01	0.01	0.01	0.01
Hardscape	0.90	0.18	0.04	0.05	0.05	0.05
Landscape	0.25	3.49	0.23	0.25	0.28	0.29
ΤΟΤΑ	L	3.80	0.30	0.33	0.35	0.36
Catchment		Outlets to:	Waterloo Court S		Weighted Runoff	Weighted Runoff
_	Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Coefficient (25 Year)	Coefficient (50 Year)	Coefficient (100 Year)
Rooftops	0.90	0.06	0.14	0.15	0.15	0.15
Hardscape	0.90	0.12	0.29	0.32	0.32	0.32
Landscape	0.25	0.20	0.13	0.14	0.16	0.16
ΤΟΤΑ	L	0.38	0.56	0.61	0.63	0.64
Catchment	203 Runoff Coefficient	Outlets to: Area (ha)	Waterloo Court S Weighted Runoff Coefficient		Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
Catchment	Runoff		Weighted Runoff	Weighted Runoff Coefficient	Coefficient	Coefficient
	Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Coefficient (50 Year)	Coefficient (100 Year)
Rooftops	Runoff Coefficient 0.90	Area (ha) 0.32	Weighted Runoff Coefficient 0.25	Weighted Runoff Coefficient (25 Year) 0.28	Coefficient (50 Year) 0.28	Coefficient (100 Year) 0.28
Rooftops Hardscape	Runoff Coefficient 0.90 0.90 0.25	Area (ha) 0.32 0.18	Weighted Runoff Coefficient 0.25 0.14	Weighted Runoff Coefficient (25 Year) 0.28 0.15	Coefficient (50 Year) 0.28 0.16	Coefficient (100 Year) 0.28 0.16
Rooftops Hardscape Landscape	Runoff Coefficient 0.90 0.90 0.25	Area (ha) 0.32 0.18 0.65	Weighted Runoff Coefficient 0.25 0.14 0.14	Weighted Runoff Coefficient (25 Year) 0.28 0.15 0.16 0.59	Coefficient (50 Year) 0.28 0.16 0.17	Coefficient (100 Year) 0.28 0.16 0.18
Rooftops Hardscape Landscape TOTA	Runoff Coefficient 0.90 0.90 0.25 L 204 Runoff Coefficient	Area (ha) 0.32 0.18 0.65 1.15	Weighted Runoff Coefficient 0.25 0.14 0.14 0.53	Weighted Runoff Coefficient (25 Year) 0.28 0.15 0.16 0.59 ek via Leslie Weighted Runoff Coefficient (25 Year)	Coefficient (50 Year) 0.28 0.16 0.17	Coefficient (100 Year) 0.28 0.16 0.18 0.61
Rooftops Hardscape Landscape TOTA	Runoff Coefficient 0.90 0.90 0.25 L 204 Runoff Coefficient 0.90	Area (ha) 0.32 0.18 0.65 1.15 Outlets to:	Weighted Runoff Coefficient 0.25 0.14 0.14 0.53 German Mills Creative Weighted Runoff	Weighted Runoff Coefficient (25 Year) 0.28 0.15 0.16 0.59 ek via Leslie Weighted Runoff Coefficient (25 Year) 0.00	Coefficient (50 Year) 0.28 0.16 0.17 0.60 Weighted Runoff Coefficient	Coefficient (100 Year) 0.28 0.16 0.18 0.61 Weighted Runoff Coefficient
Rooftops Hardscape Landscape TOTA Catchment Rooftops Hardscape	Runoff Coefficient 0.90 0.25 L 204 Runoff Coefficient 0.90 0.90	Area (ha) 0.32 0.18 0.65 1.15 Outlets to: Area (ha) 0.00 0.00 0.00	Weighted Runoff Coefficient 0.25 0.14 0.14 0.53 German Mills Crea Weighted Runoff Coefficient 0.00 0.00	Weighted Runoff Coefficient (25 Year) 0.28 0.15 0.16 0.59 ek via Leslie Weighted Runoff Coefficient (25 Year) 0.00 0.00	Coefficient (50 Year) 0.28 0.16 0.17 0.60 Weighted Runoff Coefficient (50 Year) 0.00 0.00	Coefficient (100 Year) 0.28 0.16 0.18 0.61 Weighted Runoff Coefficient (100 Year) 0.00 0.00
Rooftops Hardscape Landscape TOTA Catchment Rooftops	Runoff Coefficient 0.90 0.90 0.25 L 204 Runoff Coefficient 0.90	Area (ha) 0.32 0.18 0.65 1.15 Outlets to: Area (ha) 0.00	Weighted Runoff Coefficient 0.25 0.14 0.14 0.53 German Mills Crea Weighted Runoff Coefficient 0.00	Weighted Runoff Coefficient (25 Year) 0.28 0.15 0.16 0.59 ek via Leslie Weighted Runoff Coefficient (25 Year) 0.00	Coefficient (50 Year) 0.28 0.16 0.17 0.60 Weighted Runoff Coefficient (50 Year) 0.00	Coefficient (100 Year) 0.28 0.16 0.18 0.61 Weighted Runoff Coefficient (100 Year) 0.00

PROPOSED WEIGHTED RUNOFF COEFFICIENT

Waterloo Court STM Total

Catchment	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
202	0.56	0.38	0.14	0.15	0.17	0.17
203	0.53	1.15	0.40	0.44	0.48	0.50
тоти	AL	1.53	0.54	0.59	0.65	0.67

German Mills Creek via Leslie Total

Catchment	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
201	0.30	3.80	0.29	0.32	0.35	0.37
204	0.25	0.03	0.00	0.00	0.00	0.00
TOT	AL	3.83	0.30	0.33	0.35	0.37

Overall Total

Catchment	Runoff Coefficient	Area	Weighted Runoff Coefficient	Weighted Runoff Coefficient (25 Year)	Weighted Runoff Coefficient (50 Year)	Weighted Runoff Coefficient (100 Year)
201	0.30	3.80	0.21	0.23	0.25	0.26
202	0.56	0.38	0.04	0.04	0.05	0.05
203	0.53	1.15	0.11	0.13	0.14	0.14
204	0.25	0.03	0.00	0.00	0.00	0.00
тот	AL	5.36	0.37	0.40	0.44	0.45

SUMMARY

					10	0 Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s)	Storage Required (m ³) ^{1,2}	Ponding Depth (m)	Storage Available (m ³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Uncontrolled Release Rate (L/s)	Major (Overland) Flow (L/s)
201	is routed through	0.36	3.80	763.1	0.0	0.00	0.0	uncontrolled	-	763	
202	is routed through	0.64	0.38	134.4	0.0	0.00	0.0	108	35.0		99
203	is routed through	0.61	1.15	103.3	225.7	0.00	226.0	185	103.3		
204	is routed through	0.31	0.03	5.2	0.0	0.00	0.0	uncontrolled	-	5	
		Ē	-			Ŧ	r				
Total			5.36	1006.0	225.7	-	226.0	-	-		
	Waterloo Court	rt STM Existing Ro STM Allowable Ro STM Proposed Ro	elease Rate	213.2	L/s L/s ³ L/s						

Waterloo Court STM Proposed Release Rate	138.3	L/s
German Mills Creek via Leslie Allowable Release Rate	789.1	L/s
German Mills Creek via Leslie Proposed Release Rate	867.7	L/s
Total Allowable Release Rate to German Mills Creek	1087.2	L/s
Total Proposed Release Rate to German Mills Creek	1006.0	L/s

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

³The maximum allowable release rate to the Waterloo Court STM Sewer was determined via an HGL Analysis of the existing infrsastructure to identify what residual capacity is available in this existing system without impacting the upstream infrastructure (213.2 L/s).

					50	Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s) ²	Storage Required (m ³) ²	Ponding Depth (m)	Storage Available (m ³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Uncontrolled Release Rate (L/s)	Major (Overland) Flow (L/s)
201	is routed through	0.35	3.80	654.3	0.0	0.00	0.0	uncontrolled		654	
201	is routed through	0.35	0.38	117.9	0.0	0.00	0.0	108	35.0	0	83
203	is routed through	0.60	1.15	95.0	192.1	0.00	192.9	185	95.0	Ŭ	
204	is routed through	0.30	0.03	4.4	0.0	0.00	0.0	uncontrolled	-	4	
Total			5.36	871.7	192.1	-	973.6	-	-		
	Waterloo Court ST Waterloo Court ST				L/s L/s						
	German Mills Creek via Lesl				L/s						
(German Mills Creek via Lesl	e Proposed R	elease Rate	741.6	L/s						
	Total Allowable Release R Total Proposed Release R				L/s L/s						

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

SUMMARY

					25	Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s) ²	Storage Required (m ³) ²	Ponding Depth (m)	Storage Available (m ³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Uncontrolled Release Rate (L/s)	Major (Overland) Flow (L/s)
201	is routed through	0.33	3.80	553.8	0.0	0.00	0.0	uncontrolled	-	554	
202	is routed through	0.61	0.38	104.3	0.0	0.00	0.0	108	35.0	0	69
203	is routed through	0.59	1.15	87.6	164.7	0.00	165.4	185	87.6		
204	is routed through	0.28	0.03	3.7	0.0	0.00	0.0	uncontrolled	-	4	
Total			5.36	749.4	164.7	-	946.1	-	-		
	Waterloo Court STN				L/s						

Waterloo Court STM Proposed Release Rate	122.6	L/s
German Mills Creek via Leslie Allowable Release Rate	560.7	L/s
German Mills Creek via Leslie Proposed Release Rate	626.8	L/s
Total Allowable Release Rate to German Mills Creek	753.2	L/s
Total Proposed Release Rate to German Mills Creek	749.4	L/s

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

					10	Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s) ²	Storage Required (m ³) ²	Ponding Depth (m)	Storage Available (m ³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Release Rate Uncontrolled N	
004		0.00	0.00	404.0	0.0	0.00				400	
201	is routed through	 0.30	3.80	421.9	0.0	0.00	0.0	uncontrolled	-	422	
202	is routed through	0.56	0.38	79.5	0.0	0.00	0.0	108	35	0	44
203	is routed through	0.53	1.15	73.0	117.1	0.00	118.0	185	73		
204	is routed through	0.25	0.03	2.8	0.0	0.00	0.0	uncontrolled	-	3	
Total			5.36	577.2	117.1	-	898.7	-	-		
	Waterloo Cou Waterloo Cou				L/s L/s						
	German Mills Creek vi German Mills Creek vi			427.2 469.2	L/s L/s						
	Total Allowable Rele Total Proposed Rele				L/s L/s						

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

SUMMARY

					5	Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s) ²	Storage Required (m ³) ²	Ponding Depth (m)	Storage Available (m ³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Uncontrolled Release Rate (L/s)	Major (Overland) Flow (L/s)
201	is routed through	0.30	3.80	347.3	0	0.00	0	uncontrolled	-	347	
202	is routed through	0.56	0.38	65.4	0	0.00	0	107.9	35		30
203	is routed through	0.53	1.15	63.4	92	0.00	92	185	63		
204	is routed through	0.25	0.03	2.3	0	0.00	0	uncontrolled	-	2	
•				-		-			-	-	
Total			5.36	478.4	91.9	-	183				

Waterloo Court STM Allowable Release Rate	132.8	L/s
Waterloo Court STM Proposed Release Rate	98.4	L/s
German Mills Creek via Leslie Allowable Release Rate	351.6	L/s
German Mills Creek via Leslie Proposed Release Rate	380.0	L/s
Total Allowable Release Rate to German Mills Creek	484.4	L/s
Total Proposed Release Rate to German Mills Creek	478.4	L/s

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

					2	Year					
Catchment ID	Routing	Runoff Coef.	Area (ha)	Release Rate (L/s) ²	Storage Required (m ³) ²	Ponding Depth (m)	Storage Available (m³) ³	Orifice Size (mm) ⁴	Orifice Release Rate (L/s)	Uncontrolled Release Rate (L/s)	Major (Overland) Flow (L/s)
201	is routed through	0.30	3.80	250.3	0	0.00	0	uncontrolled	-	250	
202	is routed through	0.56	0.38	47.2	0	0.10	0	108	35	0	12
203	is routed through	0.53	1.15	49.9	61	0.00	61	185	50		
204	is routed through	0.25	0.03	1.7	0	0.00	0	uncontrolled	-	2	
			-								
Total			5.36	349.1	60.7	-	152				

Waterloo Court STM Allowable Release Rate	95.7	L/s
Waterloo Court STM Proposed Release Rate	85.0	L/s
German Mills Creek via Leslie Allowable Release Rate	253.4	L/s
German Mills Creek via Leslie Proposed Release Rate	264.1	L/s
Total Allowable Release Rate to German Mills Creek	349.2	L/s
Total Proposed Release Rate to German Mills Creek	349.1	L/s

Notes:

¹Per Modified Rational Calculations (attached).

²Site plan storage available is provided via an underground concrete storage tank in the south-east corner of the site.

				201	Area ID:						201	Area ID:	
	50 Year 1918.97 6 0.86	City of Markham a= b= c=	min min I/s	3.800 0.35 1.3310 10.0 10.0 654.27 0.0	Area = "C" = AC= Tc = ncrement = ase Rate = c.Storage =	Rele		100 Year 2167.43 6.03 0.86	City of Markham a= b= c=	min min I/s	3.800 0.36 1.3768 10.0 10.0 763.14 0.0	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =	Rele
1	Storage	Released	Runoff	Storm	Rainfall	Time		Storage	Released	Runoff	Storm	Rainfall	Time
	Volume	Volume	Volume	Runoff	Intensity			Volume	Volume	Volume	Runoff	Intensity	
	(m ³)	(m ³)	(m ³)	(l/s)	(mm/hr)	(min)		(m ³)	(m ³)	(m ³)	(l/s)	(mm/hr)	(min)
<<<<	0.0	392.6	392.6	654.27	176.8	10.0	<<<<	0.0	457.9	457.9	763.14	199.4	10.0
-	0.0	588.8	517.1	430.94	116.5	20.0		0.0	686.8	603.6	502.96	131.4	20.0
	0.0	785.1	586.3	325.75	88.0	30.0		0.0	915.8	684.5	380.29	99.4	30.0
	0.0	981.4	633.2	263.83	71.3	40.0		0.0	1144.7	739.3	308.06	80.5	40.0
	0.0	1177.7	668.3	222.77	60.2	50.0		0.0	1373.6	780.4	260.14	68.0	50.0
_	0.0	1374.0	696.3	193.42	52.3	60.0		0.0	1602.6	813.1	225.87	59.0	60.0
_	0.0	1570.2	719.5	171.32	46.3	70.0		0.0	1831.5	840.3	200.08	52.3	70.0
_	0.0	1766.5	739.4	154.04	41.6	80.0		0.0	2060.5	863.5	179.91	47.0	80.0
_	0.0	1962.8	756.7	140.13	37.9	90.0		0.0	2289.4	883.8	163.67	42.8	90.0
-	0.0	2159.1	772.1	128.69	34.8	100.0		0.0	2518.3	901.8	150.31	39.3	100.0
_	0.0	2355.4	786.0	119.09	32.2	110.0		0.0	2747.3	918.0	139.10	36.3	110.0
-	0.0	2551.6	798.6	110.91	30.0	120.0		0.0	2976.2	932.8	129.55	33.8	120.0
-	0.0	2747.9	810.1	103.86	28.1	130.0		0.0	3205.2	946.3	121.32	31.7	130.0
-	0.0	2944.2	820.8	97.71	26.4	140.0		0.0	3434.1	958.7	114.14	29.8	140.0
-	0.0	3140.5	830.7	92.30	24.9	150.0		0.0	3663.1	970.4	107.82	28.2	150.0
-	0.0	3336.8	840.0	87.50	23.6	160.0		0.0	3892.0	981.2	102.21	26.7	160.0
-	0.0	3533.0	848.7	83.21	22.5	170.0		0.0	4120.9	991.4	97.19	25.4	170.0
-	0.0	3729.3	856.9	79.34	21.4	180.0		0.0	4349.9	1001.0	92.68	24.2	180.0
-	0.0	3925.6	864.7	75.85	20.5	190.0		0.0	4578.8	1010.1	88.60	23.1	190.0
-	0.0	4121.9	872.1	72.67	19.6	200.0		0.0	4807.8	1018.7	84.89	22.2	200.0
-	0.0	4318.2	879.1	69.77	18.9	210.0		0.0	5036.7	1026.9	81.50	21.3	210.0
-	0.0	4514.4	885.8	67.11	18.1	220.0		0.0	5265.6	1034.8	78.39	20.5	220.0
-	0.0	4710.7	892.2	64.65	17.5	230.0		0.0	5494.6	1042.3	75.53	19.7	230.0
1	0.0	4907.0 5103.3	898.4 904.3	62.39 60.29	16.9 16.3	240.0 250.0		0.0	5723.5 5952.5	1049.4 1595.8	72.88 70.42	19.0 18.4	240.0 250.0

				201	Area ID:						201	Area ID:	
	City of Markham 10 Year a= 1331.42 b= 5.26 c= 0.84		1248 10.0 min 10.0 min		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			0.33 .2372 10.0 min 10.0 min City of		1.2372 10.0 min 10.0 min 553.76 l/s		Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =	
	Storage	Released	Runoff	Storm	Rainfall	Time		Storage	Released	Runoff	Storm	Rainfall	Time
	Volume	Volume	Volume	Runoff	Intensity			Volume	Volume	Volume	Runoff	Intensity	
	(m ³)	(m ³)	(m ³)	(l/s)	(mm/hr)	(min)		(m ³)	(m ³)	(m ³)	(l/s)	(mm/hr)	(min)
<<<<	0.0	253.2	253.2	421.92	134.9	10.0	<<<<	0.0	332.3	332.3	553.76	161.0	10.0
	0.0	379.7	331.6	276.30	88.4	20.0		0.0	498.4	437.6	364.63	106.0	20.0
	0.0	506.3	375.8	208.79	66.8	30.0		0.0	664.5	495.5	275.28	80.0	30.0
	0.0	632.9	406.3	169.29	54.1	40.0		0.0	830.6	534.4	222.67	64.7	40.0
	0.0	759.5	429.5	143.15	45.8	50.0		0.0	996.8	563.4	187.78	54.6	50.0
	0.0	886.0	448.1	124.48	39.8	60.0		0.0	1162.9	586.3	162.86	47.3	60.0
	0.0	1012.6	463.8	110.43	35.3	70.0		0.0	1329.0	605.2	144.10	41.9	70.0
	0.0	1139.2	477.3	99.45	31.8	80.0		0.0	1495.1	621.3	129.44	37.6	80.0
	0.0	1265.8	489.2	90.60	29.0	90.0		0.0	1661.3	635.4	117.66	34.2	90.0 100.0
	0.0	1392.3	499.9	83.31	26.6	100.0		0.0	1827.4	647.8	107.96	31.4	
	0.0	1518.9 1645.5	509.5 518.3	77.20 71.99	24.7 23.0	110.0 120.0		0.0	1993.5 2159.6	658.9 669.0	99.83 92.91	29.0 27.0	110.0 120.0
	0.0	1645.5	518.3	67.49	23.0	130.0		0.0	2325.8	678.2	92.91 86.95	27.0	120.0
	0.0	1898.7	533.9	63.56	21.0	140.0		0.0	2325.8	686.7	81.75	23.8	130.0
	0.0	2025.2	541.0	60.11	19.2	150.0		0.0	2658.0	694.6	77.18	23.8	140.0
	0.0	2023.2	547.6	57.04	19.2	160.0		0.0	2824.2	702.0	73.13	22.4	160.0
	0.0	2278.4	553.8	54.29	17.4	170.0		0.0	2990.3	702.0	69.50	20.2	170.0
	0.0	2405.0	559.6	51.82	16.6	180.0		0.0	3156.4	715.4	66.24	19.3	180.0
	0.0	2531.5	565.2	49.58	15.9	190.0		0.0	3322.5	721.6	63.30	18.4	190.0
	0.0	2658.1	570.5	47.54	15.2	200.0		0.0	3488.7	727.4	60.62	17.6	200.0
	0.0	2784.7	575.6	45.68	14.6	210.0		0.0	3654.8	732.9	58.17	16.9	210.0
	0.0	2911.3	580.4	43.97	14.1	220.0		0.0	3820.9	738.2	55.93	16.3	220.0
	0.0	3037.9	585.1	42.40	13.6	230.0		0.0	3987.0	743.3	53.86	15.7	230.0
	0.0	3164.4	589.5	40.94	13.1	240.0		0.0	4153.2	748.1	51.95	15.1	240.0
	0.0	3291.0	593.8	39.59	12.7	250.0		0.0	4319.3	752.8	50.18	14.6	250.0

	Area ID:	201						Area ID:	201				
Rele	Area = 3.800 ha "C" = 0.30 AC= 1.1248 Tc = 10.0 min Time Increment = 10.0 min Release Rate = 347.25 l/s Max.Storage = 0.0 m ³		min min I/s	City of Markham a= b= c=	5 Year 1045.41 4.9 0.83		"C" = (AC= 1.1 Tc = 7			ha min min I/s m ³	City o Markhan a= b= c=		
Time	Rainfall	Storm	Runoff	Released	Storage	[Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	111.1	347.25	208.4	208.4	0.0	<<<<	10.0	80.0	250.30	150.2	150.2	0.0	<<<<
20.0	72.5	226.75	272.1	312.5	0.0	-	20.0	51.7	161.65	194.0	225.3	0.0	
30.0 40.0	54.8	171.34	308.4	416.7 520.9	0.0		30.0	39.0	122.04	219.7	300.4	0.0	
50.0	44.5 37.6	139.00 117.64	333.6 352.9	520.9 625.1	0.0	-	40.0 50.0	31.7 26.9	99.16 84.10	238.0 252.3	375.5 450.5	0.0	
60.0	37.6	102.38	352.9 368.6	729.2	0.0	-	60.0	26.9	73.37	252.3	450.5 525.6	0.0	
70.0	29.1	90.90	381.8	833.4	0.0		70.0	23.5	65.30	204.1	600.7	0.0	
80.0	26.2	81.92	393.2	937.6	0.0		80.0	18.9	58.98	283.1	675.8	0.0	
90.0	23.9	74.69	403.3	1041.8	0.0		90.0	17.2	53.89	291.0	750.9	0.0	
100.0	22.0	68.73	412.4	1145.9	0.0		100.0	15.9	49.70	298.2	826.0	0.0	
110.0	20.4	63.73	420.6	1250.1	0.0		110.0	14.8	46.17	304.7	901.1	0.0	
120.0	19.0	59.46	428.1	1354.3	0.0		120.0	13.8	43.16	310.7	976.2	0.0	
130.0	17.8	55.78	435.1	1458.5	0.0		130.0	13.0	40.56	316.3	1051.3	0.0	
140.0	16.8	52.57	441.6	1562.6	0.0		140.0	12.2	38.28	321.6	1126.4	0.0	
150.0	15.9	49.73	447.6	1666.8	0.0		150.0	11.6	36.28	326.5	1201.4	0.0	
160.0	15.1	47.22	453.3	1771.0	0.0		160.0	11.0	34.50	331.2	1276.5	0.0	
170.0	14.4	44.97	458.6	1875.2	0.0		170.0	10.5	32.90	335.6	1351.6	0.0	
180.0	13.7	42.94	463.7	1979.3	0.0		180.0	10.1	31.46	339.7	1426.7	0.0	
190.0	13.1	41.10	468.5	2083.5	0.0		190.0	9.6	30.15	343.7	1501.8	0.0	
200.0	12.6	39.43	473.1	2187.7	0.0		200.0	9.3	28.96	347.5	1576.9	0.0	
210.0	12.1	37.90	477.5	2291.9	0.0		210.0	8.9	27.87	351.2	1652.0	0.0	
220.0	11.7	36.50	481.7	2396.0	0.0		220.0	8.6	26.87	354.7	1727.1	0.0	
230.0	11.3	35.20	485.8	2500.2	0.0		230.0	8.3	25.95	358.1	1802.2	0.0	
240.0	10.9	34.00	489.7	2604.4	0.0		240.0	8.0	25.09	361.3	1877.3	0.0	
250.0	10.5	32.89	493.4	2708.6	0.0		250.0	7.8	24.30	364.5	1952.4	0.0	
						•							

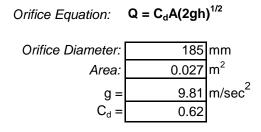
	Area ID:	202	ı					Area ID:	202	ļ							
Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =		0.380 ha 0.64 0.2424 10.0 min 10.0 min 134.38 l/s 0.0 m ³		0.64 0.2424 10.0 min 10.0 min 134.38 l/s		0.64 0.2424 10.0 min 10.0 min 134.38 l/s 0.0 m ³		City of Markham a= b= c=	100 Year 2167.43 6.03 0.86		Rele	Area = "C" = AC= Tc = Increment = ease Rate = x.Storage =	0.380 0.63 0.2399 10.0 10.0 117.94 0.0	min min I/s	City of Markham a= b= c=	50 Year 1918.97 6 0.86	
Time	Rainfall	Storm	Runoff	Released	Storage		Time	Rainfall	Storm	Runoff	Released	Storage	1				
Time	Intensity	Runoff	Volume	Volume	Volume		Tillio -	Intensity	Runoff	Volume	Volume	Volume					
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)					
10.0	199.4	134.38	80.6	80.6	0.0	<<<<	10.0	176.8	117.94	70.8	70.8	0.0	<<<<				
20.0	131.4	88.57	106.3	120.9	0.0		20.0	116.5	77.68	93.2	106.1	-12.9					
30.0	99.4	66.96	120.5	161.3	0.0		30.0	88.0	58.72	105.7	141.5	-35.8					
40.0	80.5	54.25	130.2	201.6	0.0		40.0	71.3	47.56	114.1	176.9	-62.8					
50.0	68.0	45.81	137.4	241.9	0.0		50.0	60.2	40.16	120.5	212.3	-91.8					
60.0	59.0	39.77	143.2	282.2	0.0		60.0	52.3	34.87	125.5	247.7	-122.2					
70.0	52.3	35.23	148.0	322.5	0.0		70.0	46.3	30.88	129.7	283.1	-153.3					
80.0	47.0	31.68	152.1	362.8	0.0		80.0	41.6	27.77	133.3	318.4	-185.2					
90.0	42.8	28.82	155.6	403.1	0.0		90.0	37.9	25.26	136.4	353.8	-217.4					
100.0	39.3	26.47	158.8	443.5	0.0		100.0	34.8	23.20	139.2	389.2	-250.0					
110.0	36.3	24.49	161.7	483.8	0.0		110.0	32.2	21.47	141.7	424.6	-282.9					
120.0	33.8	22.81	164.2	524.1	0.0	_	120.0	30.0	19.99	143.9	460.0	-316.0					
130.0	31.7	21.36	166.6	564.4	0.0		130.0	28.1	18.72	146.0	495.3	-349.3					
140.0	29.8	20.10	168.8	604.7	0.0		140.0	26.4	17.61	148.0	530.7	-382.8					
150.0	28.2	18.99	170.9	645.0	0.0		150.0	24.9	16.64	149.7	566.1	-416.4					
160.0	26.7	18.00	172.8	685.3	0.0		160.0	23.6	15.77	151.4	601.5	-450.1					
170.0	25.4	17.11	174.6	725.7	0.0	L.	170.0	22.5	15.00	153.0	636.9	-483.9					
180.0	24.2	16.32	176.3	766.0	0.0	L.	180.0	21.4	14.30	154.5	672.2	-517.8					
190.0	23.1	15.60	177.9	806.3	0.0	L.	190.0	20.5	13.67	155.9	707.6	-551.8					
200.0	22.2	14.95	179.4	846.6	0.0	L.	200.0	19.6	13.10	157.2	743.0	-585.8					
210.0	21.3	14.35	180.8	886.9	0.0	L.	210.0	18.9	12.58	158.5	778.4	-619.9					
220.0	20.5	13.80	182.2	927.2	0.0	L	220.0	18.1	12.10	159.7	813.8	-654.1					
230.0	19.7	13.30	183.5	967.5	0.0	_	230.0	17.5	11.65	160.8	849.2	-688.3					
240.0	19.0	12.83	184.8	1007.9	0.0		240.0	16.9	11.25	161.9	884.5	-722.6					

	Area ID:	202						Area ID:	202				
Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =		0.380 ha 0.61 0.2331 10.0 min 10.0 min 104.34 l/s 0.0 m ³		City of Markham 25 Year a= 1817.88 b= 6.22 c= 0.87			$\begin{array}{rcl} Area = & 0.380 \text{ ha} \\ "C" = & 0.56 \\ AC = & 0.2119 \\ Tc = & 10.0 \text{ min} \\ Time \text{ Increment} = & 10.0 \text{ min} \\ \end{array}$ $\begin{array}{rcl} Release \text{ Rate} = & \textbf{79.50} \text{ I/s} \\ Max.\text{Storage} = & \textbf{0.0} \text{ m}^3 \end{array}$				City of Markham a= b= c=		
Time	Rainfall	Storm	Runoff	Released	Storage		Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	161.0	104.34	62.6	62.6	0.0	<<<<	10.0	134.9	79.50	47.7	47.7	0.0	<<<<
20.0	106.0	68.71	82.4	93.9	-11.5		20.0	88.4	52.06	62.5	71.6	-9.1	
30.0	80.0	51.87	93.4	125.2	-31.8		30.0	66.8	39.34	70.8	95.4	-24.6	
40.0	64.7	41.96	100.7	156.5	-55.8		40.0	54.1	31.90	76.6	119.3	-42.7	
50.0	54.6	35.38	106.2	187.8	-81.7		50.0	45.8	26.97	80.9	143.1	-62.2	
60.0	47.3	30.69	110.5	219.1	-108.6		60.0	39.8	23.46	84.4	167.0	-82.5	
70.0	41.9	27.15	114.0	250.4	-136.4		70.0	35.3	20.81	87.4	190.8	-103.4	
80.0	37.6	24.39	117.1	281.7	-164.6		80.0	31.8	18.74	89.9	214.7	-124.7	
90.0	34.2	22.17	119.7	313.0	-193.3		90.0	29.0	17.07	92.2	238.5	-146.3	
100.0	31.4	20.34	122.1	344.3	-222.3		100.0	26.6	15.70	94.2	262.4	-168.2	
110.0	29.0	18.81	124.2	375.6	-251.5		110.0	24.7	14.55	96.0	286.2	-190.2	
120.0	27.0	17.51	126.1	406.9	-280.9		120.0	23.0	13.56	97.7	310.1	-212.4	
130.0	25.3	16.38	127.8	438.2	-310.4		130.0	21.6	12.72	99.2	333.9	-234.7	
140.0	23.8	15.40	129.4	469.5	-340.1		140.0	20.3	11.98	100.6	357.8	-257.1	
150.0	22.4	14.54	130.9	500.8	-370.0		150.0	19.2	11.33	101.9	381.6	-279.7	
160.0	21.3	13.78	132.3	532.1	-399.9		160.0	18.2	10.75	103.2	405.5	-302.3	
170.0	20.2	13.10	133.6	563.4	-429.9		170.0	17.4	10.23	104.3	429.3	-325.0	
180.0	19.3	12.48	134.8	594.8	-459.9		180.0	16.6	9.76	105.5	453.2	-347.7	
190.0	18.4	11.93	136.0	626.1	-490.1		190.0	15.9	9.34	106.5	477.0	-370.5	
200.0	17.6	11.42	137.1	657.4	-520.3		200.0	15.2	8.96	107.5	500.9	-393.4	
210.0	16.9	10.96	138.1	688.7	-550.6		210.0	14.6	8.61	108.5	524.7	-416.3	
220.0	16.3	10.54	139.1	720.0	-580.9		220.0	14.1	8.29	109.4	548.6	-439.2	
230.0	15.7	10.15	140.1	751.3	-611.2		230.0	13.6	7.99	110.2	572.4	-462.2	
240.0	15.1	9.79	141.0	782.6	-641.6		240.0	13.1	7.71	111.1	596.3	-485.2	

				202	Area ID:					1	202	Area ID:			
	2 Year 651.63 3.75 0.8	City of Markham a= b= c=	min min I/s	0.380 0.56 0.2119 10.0 10.0 47.16 0.0	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =	Rele		5 Year 1045.41 4.9 0.83	City of Markham a= b= c=	0.380 ha 0.56 0.2119 10.0 min 10.0 min 65.43 l/s 0.0 m ³		0.56 0.2119 10.0 min 10.0 min 65.43 l/s		Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =	
n –	Storage	Released	Runoff	Storm	Rainfall	Time	1	Storage	Released	Runoff	Storm	Rainfall	Time		
	Volume	Volume	Volume	Runoff	Intensity	Time		Volume	Volume	Volume	Runoff	Intensity	Time		
	(m ³)	(m ³)	(m ³)	(l/s)	(mm/hr)	(min)		(m ³)	(m^3)	(m ³)	(l/s)	(mm/hr)	(min)		
<<<<	0.0	28.3	28.3	47.16	80.0	10.0	<<<<	0.0	39.3	39.3	65.43	111.1	10.0		
-	0.0	42.4	36.6	30.46	51.7	20.0		0.0	58.9	51.3	42.73	72.5	20.0		
-	0.0	56.6	41.4	22.99	39.0	30.0		0.0	78.5	58.1	32.28	54.8	30.0		
	0.0	70.7	44.8	18.68	31.7	40.0		0.0	98.1	62.9	26.19	44.5	40.0		
	0.0	84.9	47.5	15.85	26.9	50.0		0.0	117.8	66.5	22.17	37.6	50.0		
_	0.0	99.0	49.8	13.82	23.5	60.0		0.0	137.4	69.5	19.29	32.7	60.0		
_	0.0	113.2	51.7	12.30	20.9	70.0		0.0	157.0	71.9	17.13	29.1	70.0		
_	0.0	127.3	53.3	11.11	18.9	80.0		0.0	176.7	74.1	15.44	26.2	80.0		
_	0.0	141.5	54.8	10.15	17.2	90.0		0.0	196.3	76.0	14.07	23.9	90.0		
_	0.0	155.6	56.2	9.36	15.9	100.0		0.0	215.9	77.7	12.95	22.0	100.0		
-	0.0	169.8	57.4	8.70	14.8	110.0		0.0	235.6	79.3	12.01	20.4	110.0		
-	0.0	183.9	58.6	8.13	13.8	120.0		0.0	255.2	80.7	11.20	19.0	120.0		
-	0.0	198.1	59.6	7.64	13.0	130.0		0.0	274.8	82.0	10.51	17.8	130.0		
-	0.0	212.2	60.6	7.21	12.2	140.0		0.0	294.4	83.2	9.90	16.8	140.0		
-	0.0	226.4	61.5	6.84	11.6	150.0		0.0	314.1	84.3	9.37	15.9	150.0		
-	0.0	240.5 254.7	62.4 63.2	6.50 6.20	11.0 10.5	160.0		0.0	333.7 353.3	85.4 86.4	8.90 8.47	15.1	160.0 170.0		
-	0.0	254.7 268.8	63.2 64.0	6.20 5.93	10.5	170.0		0.0	353.3 373.0	86.4 87.4	8.47	14.4 13.7			
-	0.0	268.8	64.0	5.68	9.6	180.0 190.0		0.0	373.0 392.6	87.4	7.74	13.7	180.0 190.0		
-	0.0	203.0	65.5	5.46	9.0	200.0		0.0	412.2	89.2	7.43	12.6	200.0		
1	0.0	311.3	66.2	5.25	9.3 8.9	210.0		0.0	412.2	90.0	7.43	12.0	210.0		
1	0.0	325.4	66.8	5.06	8.6	220.0		0.0	451.5	90.8	6.88	11.7	220.0		
1	0.0	339.6	67.5	4.89	8.3	230.0		0.0	471.1	91.5	6.63	11.7	230.0		
1	0.0	353.7	68.1	4.73	8.0	240.0		0.0	490.7	92.3	6.41	10.9	240.0		

Area ID: 203							Area ID:	203					
Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =		1.150 0.61 0.7031 10.0 10.0 103.28 225.7	min min I/s	City of Markham a= b= c=	100 Year 2167.43 6.03 0.86		Rele	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =	1.150 0.60 0.6950 10.0 10.0 95.04 192.1	min min I/s	City of Markham a= b= c=	50 Year 1918.97 6 0.86	
Time	Rainfall	Storm	Runoff	Released	Storage		Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	199.4	389.74	233.8	62.0	171.9		10.0	176.8	341.63	205.0	57.0	148.0	
20.0	131.4	256.87	308.2	93.0	215.3		20.0	116.5	225.02	270.0	85.5	184.5	
 30.0	99.4	194.22	349.6	123.9	225.7	<<<<	30.0	88.0	170.09	306.2	114.0	192.1	<<<<
40.0	80.5	157.33	377.6	154.9	222.7	-	40.0	71.3	137.76	330.6	142.6	188.1	
50.0 60.0	68.0 59.0	132.86 115.36	398.6 415.3	185.9 216.9	212.7 198.4	ŀ	50.0 60.0	60.2 52.3	116.32 100.99	349.0 363.6	171.1 199.6	177.9 164.0	
70.0	59.0 52.3	102.18	415.3	216.9	198.4	•	70.0	52.3 46.3	89.45	375.7	228.1	164.0	
80.0	47.0	91.88	429.2	247.9	162.2		80.0	40.3	80.43	386.1	256.6	129.5	
90.0	42.8	83.59	451.4	309.8	141.5		90.0	37.9	73.17	395.1	285.1	129.5	
100.0	39.3	76.76	460.6	340.8	119.7		100.0	34.8	67.19	403.2	313.6	89.5	
110.0	36.3	71.04	468.9	371.8	97.0	ŀ	110.0	32.2	62.18	410.4	342.1	68.3	
120.0	33.8	66.16	476.4	402.8	73.6		120.0	30.0	57.91	417.0	370.7	46.3	
130.0	31.7	61.96	483.3	433.8	49.5		130.0	28.1	54.23	423.0	399.2	23.8	
140.0	29.8	58.29	489.6	464.8	24.9		140.0	26.4	51.02	428.6	427.7	0.9	
150.0	28.2	55.06	495.6	495.8	0.0	ľ	150.0	24.9	48.20	433.8	456.2	0.0	
160.0	26.7	52.20	501.1	526.7	0.0	1	160.0	23.6	45.69	438.6	484.7	0.0	
170.0	25.4	49.64	506.3	557.7	0.0		170.0	22.5	43.45	443.2	513.2	0.0	
180.0	24.2	47.33	511.2	588.7	0.0		180.0	21.4	41.43	447.4	541.7	0.0	
190.0	23.1	45.25	515.9	619.7	0.0		190.0	20.5	39.61	451.5	570.2	0.0	
200.0	22.2	43.36	520.3	650.7	0.0		200.0	19.6	37.95	455.4	598.7	0.0	
210.0	21.3	41.62	524.5	681.7	0.0		210.0	18.9	36.43	459.0	627.3	0.0	
220.0	20.5	40.03	528.5	712.6	0.0		220.0	18.1	35.04	462.5	655.8	0.0	
230.0	19.7	38.57	532.3	743.6	0.0		230.0	17.5	33.76	465.9	684.3	0.0	
240.0	19.0	37.22	536.0	774.6	0.0		240.0	16.9	32.58	469.1	712.8	0.0	
250.0	18.4	35.97	539.5	805.6	0.0		250.0	16.3	31.48	472.2	741.3	0.0	

	Area ID:	203						Area ID:	203				
Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =		1.150 ha 0.59 0.6738 10.0 min 10.0 min 87.58 l/s 164.7 m ³		City of Markham a= b= c=	25 Year 1817.88 6.22 0.87		"C" = AC= 0. Tc = Time Increment = Release Rate = 7			ha min min I/s m ³	City of Markham a= b= c=		
Time	Rainfall	Storm	Runoff	Released	Storage	r	Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	161.0	301.55	180.9	52.5	128.4		10.0	134.9	229.76	137.9	43.8	94.1	
20.0	106.0	198.56	238.3	78.8	159.5		20.0	88.4	150.46	180.6	65.7	114.9	
30.0	80.0	149.91	269.8	105.1	164.7	<<<<	30.0	66.8	113.70	204.7	87.6	117.1	<<<<
40.0	64.7	121.26	291.0	131.4	159.6	Ļ	40.0	54.1	92.19	221.2	109.5	111.8	
50.0	54.6	102.26	306.8	157.6	149.1	_	50.0	45.8	77.95	233.9	131.4	102.5	
60.0	47.3	88.68	319.3	183.9	135.3	_	60.0	39.8	67.79	244.0	153.3	90.8	
70.0	41.9	78.47	329.6	210.2	119.4	-	70.0	35.3	60.14	252.6	175.2	77.4	
80.0	37.6	70.49	338.4	236.5	101.9	-	80.0	31.8	54.16	259.9	197.1	62.9	
90.0	34.2	64.07	346.0	262.7	83.3	-	90.0	29.0	49.34	266.4	219.0	47.5	
100.0	31.4	58.79	352.7	289.0	63.7		100.0	26.6	45.37	272.2	240.9	31.4	
110.0	29.0	54.36	358.8	315.3	43.5		110.0	24.7	42.04	277.5	262.7	14.7	
120.0	27.0	50.60	364.3	341.6	22.7	ŀ	120.0	23.0	39.20	282.3	284.6	0.0	
130.0	25.3	47.35	369.3	367.8	1.5	ŀ	130.0	21.6	36.75	286.7	306.5	0.0	
140.0	23.8	44.52	374.0	394.1	0.0	ŀ	140.0	20.3	34.61	290.8	328.4	0.0	
150.0	22.4	42.03	378.3	420.4	0.0	F	150.0	19.2	32.73	294.6	350.3	0.0	
160.0	21.3	39.82	382.3	446.7	0.0	ŀ	160.0	18.2	31.06	298.2	372.2	0.0	
170.0	20.2	37.85	386.0	472.9	0.0	ŀ	170.0	17.4	29.56	301.6	394.1	0.0	
180.0	19.3	36.07	389.6	499.2	0.0	ŀ	180.0	16.6	28.22	304.8	416.0	0.0	
190.0	18.4	34.47	392.9	525.5	0.0	ŀ	190.0	15.9	27.00	307.8	437.9	0.0	
200.0	17.6	33.01	396.1	551.7	0.0	ŀ	200.0	15.2	25.89	310.7	459.8	0.0	
210.0	16.9	31.68	399.1	578.0	0.0	ŀ	210.0	14.6	24.88	313.4	481.7	0.0	
220.0	16.3	30.46	402.0	604.3	0.0	ŀ	220.0	14.1	23.94	316.1	503.6	0.0	
230.0	15.7	29.33	404.8	630.6	0.0	ŀ	230.0	13.6	23.09	318.6	525.5	0.0	
240.0	15.1	28.29	407.4	656.8	0.0	ŀ	240.0	13.1	22.29	321.0	547.4	0.0	
250.0	14.6	27.33	409.9	683.1	0.0	L	250.0	12.7	21.56	323.4	569.3	0.0	



		Area ID:	203						Area ID:	203	I			
	Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage =		1.150 0.53 0.6125 10.0 10.0 63.40 91.9	min min I/s	City of Markham a= b= c=	5 Year 1045.41 4.9 0.83		Rele	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =	1.150 0.53 0.6125 10.0 10.0 49.93 60.7	min min I/s	City of Markham a= b= c=	2 Year 651.63 3.75 0.8	
Ti	ïme	Rainfall	Storm	Runoff	Released	Storage	. Г	Time	Rainfall	Storm	Runoff	Released	Storage	1
		Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
	min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
	0.0	111.1	189.10	113.5	38.0	75.4		10.0	80.0	136.30	81.8	30.0	51.8	
	20.0	72.5	123.48	148.2	57.1	91.1	-	20.0	51.7	88.03	105.6	44.9	60.7	<<<<
	80.0	54.8	93.30	167.9	76.1	91.9	<<<<	30.0	39.0	66.46	119.6	59.9	59.7	
	0.0	44.5	75.70	181.7	95.1	86.6	-	40.0	31.7	54.00	129.6	74.9	54.7	
	50.0	37.6	64.06	192.2	114.1	78.1		50.0	26.9	45.80	137.4	89.9	47.5	
	0.0	32.7	55.75	200.7	133.1	67.6		60.0	23.5	39.95	143.8	104.9	39.0	
	0.0	29.1	49.50	207.9	152.1	55.8	ŀ	70.0	20.9	35.56	149.3	119.8	29.5	
	30.0	26.2	44.61	214.1	171.2	43.0	ŀ	80.0	18.9	32.12	154.2	134.8	19.4 8.7	
	0.0 00.0	23.9 22.0	40.67 37.43	219.6 224.6	190.2 209.2	29.4 15.4	ŀ	90.0 100.0	17.2 15.9	29.35 27.06	158.5 162.4	149.8 164.8	0.0	
	10.0	22.0	34.70	224.0	209.2	0.8	-	110.0	14.8	27.00	165.9	179.8	0.0	
	20.0	19.0	32.38	229.0	220.2	0.0	-	120.0	14.0	23.14	169.2	179.8	0.0	
	30.0	17.8	30.38	236.9	266.3	0.0		130.0	13.0	23.30	172.3	209.7	0.0	
	40.0	16.8	28.63	230.9	285.3	0.0	ŀ	140.0	12.2	22.09	172.3	209.7	0.0	
	40.0 50.0	15.9	27.08	240.3	304.3	0.0	ŀ	150.0	11.6	19.76	177.8	239.7	0.0	
	60.0	15.1	25.71	246.8	323.3	0.0	ŀ	160.0	11.0	18.78	180.3	254.6	0.0	
	70.0	14.4	24.49	249.8	342.3	0.0	ŀ	170.0	10.5	17.91	182.7	269.6	0.0	
	80.0	13.7	23.38	252.5	361.4	0.0	F	180.0	10.0	17.13	185.0	284.6	0.0	
	90.0	13.1	22.38	255.2	380.4	0.0	ľ	190.0	9.6	16.42	187.2	299.6	0.0	
	00.0	12.6	21.47	257.7	399.4	0.0	ľ	200.0	9.3	15.77	189.3	314.6	0.0	
	10.0	12.1	20.64	260.0	418.4	0.0	l f	210.0	8.9	15.18	191.2	329.5	0.0	
	20.0	11.7	19.87	262.3	437.4	0.0	ľ	220.0	8.6	14.63	193.2	344.5	0.0	
23	30.0	11.3	19.17	264.5	456.4	0.0	ľ	230.0	8.3	14.13	195.0	359.5	0.0	
24	40.0	10.9	18.52	266.6	475.5	0.0	ľ	240.0	8.0	13.66	196.8	374.5	0.0	
25	50.0	10.5	17.91	268.7	494.5	0.0	Ē	250.0	7.8	13.23	198.5	389.5	0.0	

ON-SITE DETENTION AND ORIFICE DETAILS

Area ID

Type of Control: VERTICAL Location: 0

Underground Storage

Volume = 275.6 m³

	Stage (m)	Head (m)	Storage (m ³)	Discharge (m ³ /s)
Invert E.L.	157.00	0.00	0.0	0.00
2 Year WL	157.55	0.46	60.6	0.050
5 Year WL	157.83	0.74	91.5	0.063
10 Year WL	158.07	0.98	118.0	0.073
25 Year WL	158.50	1.41	165.4	0.088
50 Year WL	158.75	1.66	192.9	0.095
100 Year WL	159.05	1.96	226.0	0.103

MODIFIED RATIONAL METHOD

Are	ea ID:	204						Area ID:	204	-			
Area = 0.030 ha "C" = 0.31 AC= 0.0094 Tc = 10.0 min Time Increment = 10.0 min Release Rate = 5.20 l/s Max.Storage = 0.0 m ³		City of Markham a=	100 Year 2167.43		Rele	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =		min min I/s	City of Markham a=	50 Year 1918.97			
				b= C=	6.03 0.86						b= c=	6 0.86	
Time Ra	ainfall	Storm	Runoff	Released	Storage		Time	Rainfall	Storm	Runoff	Released	Storage	I
Inte	ensity m/hr)	Runoff (I/s)	Volume (m ³)	Volume (m ³)	Volume (m ³)		(min)	Intensity (mm/hr)	Runoff (l/s)	Volume (m ³)	Volume (m ³)	Volume (m ³)	
	99.4	5.20	3.1	3.1	0.0	<<<<	10.0	176.8	4.42	2.7	2.7	0.0	<<<<
	31.4	3.42	4.1	4.7	0.0		20.0	116.5	2.91	3.5	4.0	0.0	
30.0 9	99.4	2.59	4.7	6.2	0.0		30.0	88.0	2.20	4.0	5.3	0.0	

10.0	199.4	5.20	3.1	3.1	0.0
20.0	131.4	3.42	4.1	4.7	0.0
30.0	99.4	2.59	4.7	6.2	0.0
40.0	80.5	2.10	5.0	7.8	0.0
50.0	68.0	1.77	5.3	9.4	0.0
60.0	59.0	1.54	5.5	10.9	0.0
70.0	52.3	1.36	5.7	12.5	0.0
80.0	47.0	1.23	5.9	14.0	0.0
90.0	42.8	1.11	6.0	15.6	0.0
100.0	39.3	1.02	6.1	17.1	0.0
110.0	36.3	0.95	6.3	18.7	0.0
120.0	33.8	0.88	6.4	20.3	0.0
130.0	31.7	0.83	6.4	21.8	0.0
140.0	29.8	0.78	6.5	23.4	0.0
150.0	28.2	0.73	6.6	24.9	0.0
160.0	26.7	0.70	6.7	26.5	0.0
170.0	25.4	0.66	6.8	28.1	0.0
180.0	24.2	0.63	6.8	29.6	0.0
190.0	23.1	0.60	6.9	31.2	0.0
200.0	22.2	0.58	6.9	32.7	0.0
210.0	21.3	0.55	7.0	34.3	0.0
220.0	20.5	0.53	7.0	35.9	0.0
230.0	19.7	0.51	7.1	37.4	0.0
240.0	19.0	0.50	7.1	39.0	0.0

Time (min)	Rainfall Intensity (mm/hr)	Storm Runoff (l/s)	Runoff Volume (m ³)	Released Volume (m ³)	Storage Volume (m ³)
10.0	176.8	4.42	2.7	2.7	0.0
20.0	116.5	2.91	3.5	4.0	0.0
30.0	88.0	2.20	4.0	5.3	0.0
40.0	71.3	1.78	4.3	6.6	0.0
50.0	60.2	1.51	4.5	8.0	0.0
60.0	52.3	1.31	4.7	9.3	0.0
70.0	46.3	1.16	4.9	10.6	0.0
80.0	41.6	1.04	5.0	11.9	0.0
90.0	37.9	0.95	5.1	13.3	0.0
100.0	34.8	0.87	5.2	14.6	0.0
110.0	32.2	0.81	5.3	15.9	0.0
120.0	30.0	0.75	5.4	17.3	0.0
130.0	28.1	0.70	5.5	18.6	0.0
140.0	26.4	0.66	5.5	19.9	0.0
150.0	24.9	0.62	5.6	21.2	0.0
160.0	23.6	0.59	5.7	22.6	0.0
170.0	22.5	0.56	5.7	23.9	0.0
180.0	21.4	0.54	5.8	25.2	0.0
190.0	20.5	0.51	5.8	26.5	0.0
200.0	19.6	0.49	5.9	27.9	0.0
210.0	18.9	0.47	5.9	29.2	0.0
220.0	18.1	0.45	6.0	30.5	0.0
230.0	17.5	0.44	6.0	31.9	0.0
240.0	16.9	0.42	6.1	33.2	0.0

Baha'i National Centre Project Number: 2004 Date: January 2024 Designer Initials: M.G.V.

MODIFIED RATIONAL METHOD

	Area ID:	204						Area ID:	204				
Rele	Area = "C" = AC= Tc = Increment = ease Rate = ax.Storage =	0.28 0.0083 10.0 10.0 3.69	min min I/s	City of Markham a= b= c=			Rele	Area = "C" = AC= Tc = ncrement = ease Rate = x.Storage =	0.030 0.25 0.0075 10.0 10.0 2.81 0.0	min min I/s	City of Markham a= b= c=	10 Year 1331.42 5.26 0.84	
Time	Rainfall	Storm	Runoff	Released	Storage		Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume			Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)		(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	161.0	3.69	2.2	2.2	0.0	<<<<	10.0	134.9	2.81	1.7	1.7	0.0	<<<<
20.0	106.0	2.43	2.9	3.3	0.0		20.0	88.4	1.84	2.2	2.5	0.0	i i
30.0	80.0	1.84	3.3	4.4	0.0		30.0	66.8	1.39	2.5	3.4	0.0	i i
40.0	64.7	1.48	3.6	5.5	0.0		40.0	54.1	1.13	2.7	4.2	0.0	l l
50.0	54.6	1.25	3.8	6.6	0.0		50.0	45.8	0.95	2.9	5.1	0.0	i i
60.0	47.3	1.09	3.9	7.8	0.0		60.0	39.8	0.83	3.0	5.9	0.0	i i
70.0	41.9	0.96	4.0	8.9	0.0		70.0	35.3	0.74	3.1	6.8	0.0	i i
80.0	37.6	0.86	4.1	10.0	0.0		80.0	31.8	0.66	3.2	7.6	0.0	i i
90.0	34.2	0.78	4.2	11.1	0.0		90.0	29.0	0.60	3.3	8.4	0.0	l l
100.0	31.4	0.72	4.3	12.2	0.0		100.0	26.6	0.56	3.3	9.3	0.0	l l
110.0	29.0	0.67	4.4	13.3	0.0		110.0	24.7	0.51	3.4	10.1	0.0	l l
120.0	27.0	0.62	4.5	14.4	0.0		120.0	23.0	0.48	3.5	11.0	0.0	l l
130.0 140.0	25.3 23.8	0.58 0.55	4.5 4.6	15.5 16.6	0.0		130.0 140.0	21.6 20.3	0.45	3.5 3.6	11.8 12.7	0.0	l l
	23.8	0.55	4.6	16.6	0.0			20.3 19.2	0.42			0.0	l l
150.0 160.0	22.4	0.31	4.0	18.8	0.0		150.0 160.0	19.2	0.40	3.6 3.7	13.5 14.3	0.0	l l
													l l
170.0 180.0	20.2 19.3	0.46	4.7 4.8	19.9 21.0	0.0		170.0 180.0	17.4 16.6	0.36	3.7 3.7	15.2 16.0	0.0	
190.0	19.3	0.44	4.8	21.0	0.0		190.0	15.9	0.35	3.7	16.0	0.0	
200.0	16.4	0.42	4.8	22.2	0.0		200.0	15.9	0.33	3.8	16.9	0.0	
200.0	16.9	0.40	4.9	23.3	0.0		200.0	13.2	0.32	3.8	17.7	0.0	
210.0	16.3	0.39	4.9	24.4	0.0		210.0	14.0	0.30	3.9	19.4	0.0	
220.0	16.3	0.37	4.9 5.0	25.5 26.6	0.0		220.0	14.1	0.29	3.9	20.3	0.0	
240.0	15.1	0.35	5.0	27.7	0.0		240.0	13.1	0.27	3.9	21.1	0.0	1

Baha'i National Centre Project Number: 2004 Date: January 2024 Designer Initials: M.G.V.

MODIFIED RATIONAL METHOD

Area = 0.030 ha "C" = 0.25 AC= 0.0075	
Tc = 10.0 min Tc = 10.0 min	
Time Increment = 10.0 min Time Increment = 10.0 min	
City of City of	
Release Rate =2.32 l/sMarkham 5 YearRelease Rate =1.67 l/sMarkham 2 Year	
Max.Storage = 0.0 m^3 $a = 1045.41$ Max.Storage = 0.0 m^3 $a = 651.63$ $b = 4.9$ $c = 0.83$ $c = 0.83$ $c = 0.8$	

Time	Rainfall	Storm	Runoff	Released	Storage	
(min)	Intensity (mm/hr)	Runoff (l/s)	Volume (m ³)	Volume (m ³)	Volume (m ³)	
· · · ·	(/	. ,				
10.0	111.1	2.32	1.4	1.4	0.0	<<<<
20.0	72.5	1.51	1.8	2.1	0.0	
30.0	54.8	1.14	2.1	2.8	0.0	
40.0	44.5	0.93	2.2	3.5	0.0	
50.0	37.6	0.78	2.4	4.2	0.0	
60.0	32.7	0.68	2.5	4.9	0.0	
70.0	29.1	0.61	2.5	5.6	0.0	
80.0	26.2	0.55	2.6	6.3	0.0	
90.0	23.9	0.50	2.7	6.9	0.0	
100.0	22.0	0.46	2.7	7.6	0.0	
110.0	20.4	0.42	2.8	8.3	0.0	
120.0	19.0	0.40	2.9	9.0	0.0	
130.0	17.8	0.37	2.9	9.7	0.0	
140.0	16.8	0.35	2.9	10.4	0.0	
150.0	15.9	0.33	3.0	11.1	0.0	
160.0	15.1	0.31	3.0	11.8	0.0	
170.0	14.4	0.30	3.1	12.5	0.0	
180.0	13.7	0.29	3.1	13.2	0.0	
190.0	13.1	0.27	3.1	13.9	0.0	
200.0	12.6	0.26	3.2	14.6	0.0	
210.0	12.1	0.25	3.2	15.3	0.0	
220.0	11.7	0.24	3.2	16.0	0.0	
230.0	11.3	0.23	3.2	16.7	0.0	
240.0	10.9	0.23	3.3	17.4	0.0	

Time	Rainfall Intensity	Storm Runoff	Runoff Volume	Released Volume	Storage Volume
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)
10.0	80.0	1.67	1.0	1.0	0.0
20.0	51.7	1.08	1.3	1.5	0.0
30.0	39.0	0.81	1.5	2.0	0.0
40.0	31.7	0.66	1.6	2.5	0.0
50.0	26.9	0.56	1.7	3.0	0.0
60.0	23.5	0.49	1.8	3.5	0.0
70.0	20.9	0.44	1.8	4.0	0.0
80.0	18.9	0.39	1.9	4.5	0.0
90.0	17.2	0.36	1.9	5.0	0.0
100.0	15.9	0.33	2.0	5.5	0.0
110.0	14.8	0.31	2.0	6.0	0.0
120.0	13.8	0.29	2.1	6.5	0.0
130.0	13.0	0.27	2.1	7.0	0.0
140.0	12.2	0.26	2.1	7.5	0.0
150.0	11.6	0.24	2.2	8.0	0.0
160.0	11.0	0.23	2.2	8.5	0.0
170.0	10.5	0.22	2.2	9.0	0.0
180.0	10.1	0.21	2.3	9.5	0.0
190.0	9.6	0.20	2.3	10.0	0.0
200.0	9.3	0.19	2.3	10.5	0.0
210.0	8.9	0.19	2.3	11.0	0.0
220.0	8.6	0.18	2.4	11.5	0.0
230.0	8.3	0.17	2.4	12.0	0.0
240.0	8.0	0.17	2.4	12.5	0.0

<<<<

Baha'i National Centre Project Number: 2004 Date: January 2024 Designer Initials: M.G.V.

Post-Development Conditions

Land Use	Area (ha)	Rainfall Depth (mm)	Rainfall Volume (m ³)
	(1)	(2)	(3) = (2)x(1)x10 m3/ha-mm
Hardscaping	0.49	5	24.3
Rooftops	0.43	5	21.4
Total	0.91		45.7

Water balance treatment of the 45.7 cu.m is required. The permeable pavers in the vistor parking area are designed to satisfy this required retention volume, however a water re-use component is proposed in the underground storage tank infrastructure under the outlet invert and the active storage component, and an enhanced grassed swale with an infiltration component is proposed at the eastern parking lot outlet.

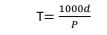
Permeable Pavement Sizing Catchment A

Water Quality Storage Requirements per MECP Criteria (Refer to Table 3.2 from MECP Design Manual (2003)):

This Permeable Pavement is designed to provide Enhanced Level Protection:

Protection Level	SWMP Type	torage Volu	me (m³/ha) fo	r Impervio	us Lev
	Swiir Type	35	55	70	85
	1. Infiltration	25	30	35	40
Enhanced	2. Wetlands	80	105	120	140
(Level 1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
	4. Wet Pond	140	190	225	250
	1. Infiltration	20	20	25	30
Normal	2. Wetlands	60	70	80	90
(Level 2)	Hybrid Wet Pond/Wetland	75	90	105	120
	4. Wet Pond	90	110	130	150
	1. Infiltration	20	20	20	20
Basic	2. Wetlands	60	60	60	60
	3. Hybrid Wet Pond/Wetland	60	70	75	80
(Level 3)	4. Wet Pond	60	75	85	95
	5. Dry Pond (ContinuousFlow)	90	150	200	240

TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS (FROM MECP SWM PLANNING AND DESIGN MANUAL - 2003)


Eastern Parking Lot Impervious Level =	16.53	%	
Storage Volume for Impervious Level =	20.0	m³/ha	*Per Table 3.2 from MECP Design Manual (200
Required Storage Volume (V) =	73.2	m³	
Provided Storage Volume =	73.3	m³	

Therefore, the provided storage volume exceeds the storage volume required to provide Enhanced (Level 1) Protection.

Permeable Pavement Drawdown Time:

Permeable Pavement Area (A) =	764.0	m ²						
Percolation Rate =	22.8	mm/hr	*Per the HydrogeoSieveXL Program discussed (Section 5.4.1), and the In-situ Single Well Response Tests (Section 5.4.2) in the Terraprobe Hydrogeological Report (dated December 2023)					
Safety Factor =	4.5		*Per TRCA SWM Criteria 2012					
Design Percolation Rate (P) =	5.08	mm/hr						
Depth of Filter $(d) =$	0.24	m						
$d = \frac{PT}{1000}$			*Equation 4.2 Surface Area of Soakaway Pit MECP Stormwater Management Planning and Design Manual					
Arranged to solved for drawdown time:								

Arranged to solved for drawdown time:

Drawdown Time (t) = 47.3 hr

P:\2004 Bahai National Centre\Design\SWM\FSP\Design Calculations\2004 - Permeable Paver Sizing.xls

Permeable Pavement Sizing Catchment A

TRCA LID Sizing Criteria:

Void Space Ratio (V_r) = 0.4 $A_f = \frac{WQV}{dV_r}$ Equation (2) Minimum footprint area (A_f) = 762.5 m² Proposed Permeable Pavement footprint area = 764.0 m²

Since the proposed Permeable Pavement footprint is greater than the minimum, the proposed Permeable Pavement is in accordance with the TRCA LID criteria.

Proposed Permeable Pavement footprint area = Proposed impervious drainage area =	764 3700	m² m²		
Ratio of impervious drainage area to footprint surface area =	0.21	=	5	:1

As calculated, the ratio of impervious drainage area to proposed Permeable Pavement surface area falls within the 5:1 to 20:1 TRCA LID criteria.

Water Balance Calculations:

Overall Water Balance Volume Required =	45.7	m ³
Proposed Permeable Pavement Area = Proposed Permeable Pavement Depth =	764.0 0.2	m² m
r toposeu r enneable r avenient Deptir –	0.2	
Water Balance Volume Provided =	73.3	m³

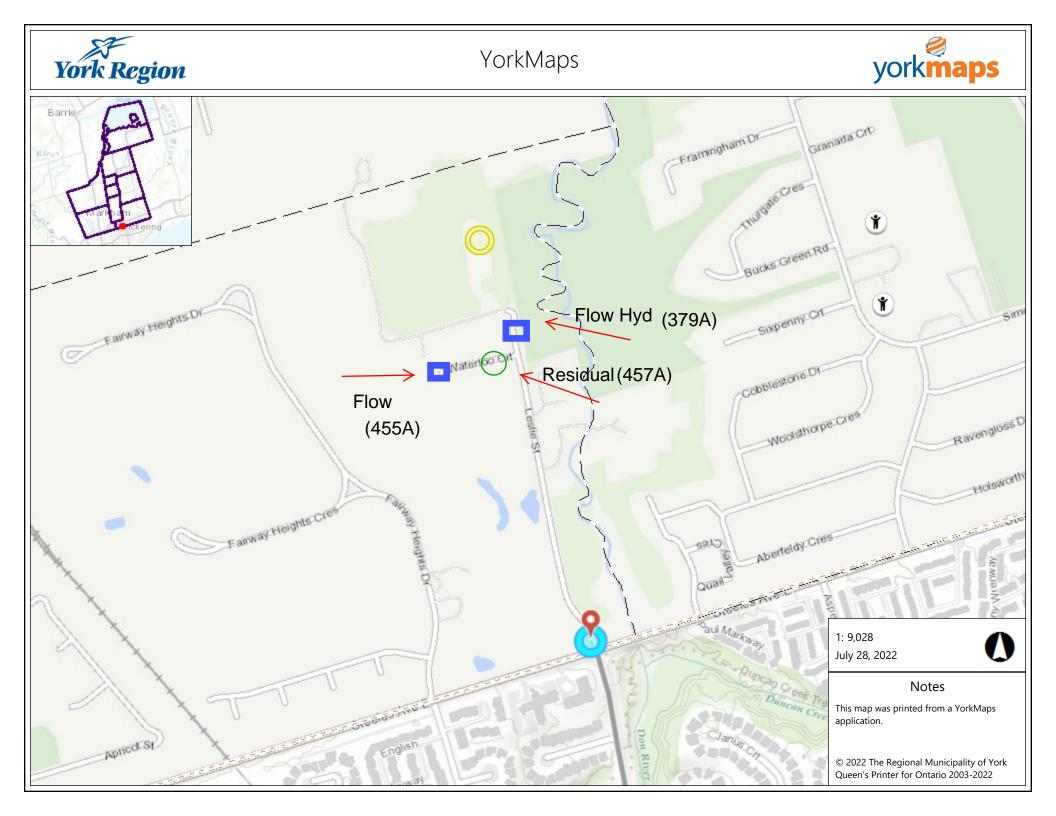
Therefore, the proposed permeable pavement for the eastern parking area provides 73.35 m3 of water balance.

P:\2004 Bahai National Centre\Design\SWM\FSP\Design Calculations\2004 - Permeable Paver Sizing.xls

Appendix D Sanitary Flow Calculations

SANITARY SEWER FLOW CALCULATIONS

Bahai National Centre


Average Domestic Flow Rate (Per City of Markham Sanitary Design Critera)	365 L/cap/day
Peaking Factor (Harmon) (Per City of Markham Sanitary Design Critera)	4.00
Infiltration Rate (Per City of Markham Sanitary Design Critera)	0.26 L/s/ha
Temple (Institutional) Gross Ground Floor Area for Temple	0.18 ha
Area for Temple Lands	2.66 ha
Pop. per Hectare of Gross Floor Area (Per City of Markham Sani. Design Critera)	60.0 people / ha
Population for Temple	10.8 persons
Domestic Flow for Temple	0.05 L/s
Peaked Domestic Flow for Temple	0.18 L/s
Infiltration for Temple	0.05 L/s
Infiltration for Temple Lands	0.69 L/s
Total Flow for Temple	0.9 L/s
Proposed Building (Institutional) Gross Ground Floor Area for Proposed Building	0.52 ha
Area for Proposed Building Lands	0.88 ha
Pop. per Hectare of Gross Floor Area (Per City of Markham Sani. Design Critera)	60.0 people / ha
Population of Proposed Building	31.2 persons
Domestic Flow for Proposed Building	0.13 L/s
Peaked Domestic Flow for Proposed Building	0.53 L/s
Infiltration for Proposed Building	0.14 L/s
Infiltration for Proposed Building Lands	0.23 L/s
Total Flow for Proposed Building	0.9 L/s
Parking Lot (Institutional) Gross Floor Area for Parking Lot Ancillary Buildings	0.03 ha
Area for Parking Lot Lands	1.41 ha
Pop per Hectare of Gross Floor Area (Per City of Markham Sani. Design Critera)	60.0 people / ha
Population for Parking Lot	1.5 persons

SCS consulting group Itd	SANITARY SEWER FLOW CALCULATIONS	Job Number: 2004 Date: January 2024 Designer Initials: J.Y.L.
	Bahai National Centre	
Domestic Flow for Parking Lot		0.01 L/s
Peaked Domestic Flow for Parking Lot		0.03 L/s
Infiltration for Parking Lot Ancillary Buildi	ngs	0.01 L/s
Infiltration for Parking Lot Lands	0.37 L/s	
Total Flow for Parking Lot	0.4 L/s	
Total Proposed Sanitary Flow		2.2 L/s
Existing Waterloo Court (Residential) Area for Existing Waterloo Court		1.81 ha
Existing Units		7 units
Existing Population per Unit (Per City of	Markham Sanitary Design Critera)	4.0 person / unit
Existing Population		28.0 persons
Existing Residential Flow		0.12 L/s
Existing Peaked Residential Flow	0.47 L/s	
Existing Infiltration	0.5 L/s	
Total Existing Sanitary Flow		0.9 L/s

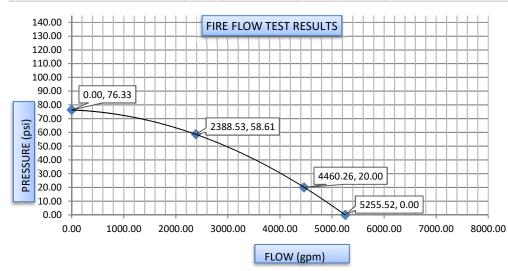
Minimum Sever Diameter (mm) - Mannings = Minimum Vedocity (ms) = Minimum Vedocity (ms) = Minimum Pipe Slope (%) = LOCATION	0.013 0.60 3.65	Inf Max. Ha Min. Ha	filtration Ra rmon Peaki rmon Peaki	l/cap/day) = nte (l/s/ha) = ng Factor = ng Factor = SIZE USED	0.26 4.0 1.5	RESIDEN			BAHAI			ENTRE (72	FSP [arkham, 9	E STREET) FSP SANI'	ΓARY DSG		FLOW CALCU			Project No.	26-Jan-24 J.L./P.C. P.C./P.G.	IONAL CENT	l Centre Design Pipe		, 004P-FSP-Saritary Shee	
STREET	MAN	HOLE	AREA	ACCUM. AREA	UNITS	1	SITY	RESIDENTIAL POPULATION	ACCUM. RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	ACCUM. EQUIV. POPULATION	INFILTRATION	TOTAL ACCUM. POPULATION	AVG. DOMESTIC FLOW	ACCUM. AVG. DOMESTIC FLOW	PEAKING	PEAKED RESIDENTIAL FLOW	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETER	CL OPE	FULL FLOW CAPACITY	FULL FLOW VELOCITY
	FROM	то	(ha)	(ha)	(#)	(p/unit)	(p/ha)		FORELATION	(ha)	(ha)	(p/ha)	(l/s/ha)	TOPOLATION	(L/s)	FORELATION	(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)
LESLIE STREET	TEMPLE	MH1A	0	0	0	u . 7		0	0	2.66	2.66	0	0	0	0.69	0	0.0	0.0	4.00	0.0	0.0	0.7	8.8	200	0.50	23.2	0.74
LESLIE STREET	TEMPLE	MH1A	0	0	0			0	0	0.18	0.18	60	0	10.8	0.05	10.8	0.0	0.0	4.00	0.2	0.0	0.2	8.8	200	0.50	23.2	0.74
LESLIE STREET	MH1A	MH2A	0	0	0			0	0	0	2.84	0	0	10.8	0.74	10.8	0.0	0.0	4.00	0.2	0.0	0.9	44.8	200	0.50	23.2	0.74
LESLIE STREET	MH2A	MH3A	0	0	0			0	0	0	2.84	0	0	10.8	0.7	10.8	0.0	0.0	4.00	0.2	0.0	0.9	119.6	200	0.50	23.2	0.74
LESLIE STREET	BLDG	MH3A	0	0	0			0	0	0.88	0.88	0	0	0	0.23	0	0.0	0.0	4.00	0.0	0.0	0.2	3.5	200	0.50	23.2	0.74
LESLIE STREET	BLDG	MH3A	0	0	0			0	0	0.52	0.52	60	0	31.2	0.14	31.2	0.1	0.1	4.00	0.5	0.0	0.7	3.5	200	0.50	23.2	0.74
LESLIE STREET	PRKG LOT	MH3A	0	0	0			0	0	1.405	1.405	0	0	0	0.37	0	0.0	0.0	4.00	0.0	0.0	0.4	4.2	200	0.50	23.2	0.74
LESLIE STREET	PRKG LOT	MH3A	0	0	0			0	0	0.025	0.025	60	0	1.5	0.01	1.5	0.0	0.0	4.00	0.0	0.0	0.0	4.2	200	0.50	23.2	0.74
LESLIE STREET	MH3A	MH4A	0	0	0			0	0	0	5.67	0	0	43.5	1.47	43.5	0.0	0.2	4.00	0.7	0.0	2.2	39.5	200	0.50	23.2	0.74
LESLIE STREET	MH4A	MH5A	0	0	0			0	0	0	5.67	0	0	43.5	1.47	43.5	0.0	0.2	4.00	0.7	0.0	2.2	83.0	200	0.50	23.2	0.74
WATERLOO COURT	EXMH1A	EXMH2A	1.08	1.08	4	4		16	16	0	0	0	0	0	0.28	16	0.1	0.1	4.00	0.3	0.0	0.6	61.0	200	4.50	69.5	2.21
WATERLOO COURT	EXMH2A	EXMH3A	0.73	1.81	3	4		12	28	0	0	0	0	0	0.47	28	0.1	0.1	4.00	0.5	0.0	0.9	74.0	200	4.00	65.6	2.09
																										<u> </u>	I
EASEMENT	MH5A	EXMH3A	0	0	0			0	0	0	5.67	0	0	43.5	1.47	43.5	0.0	0.2	4.00	0.7	0.0	2.2	1.0	200	0.50	23.2	0.74
EASEMENT	EXMH3A	EXMH4A	0.05	1.86	0			0	28	0	5.67	0	0	43.5	1.96	71.5	0.0	0.3	4.00	1.2	0.0	3.2	47.5	200	10.00	103.7	3.30
EASEMENT	EXMH4A	EXMH5A	0.04	1.9	0			0	28	0	5.67	0	0	43.5	1.97	71.5	0.0	0.3	4.00	1.2	0.0	3.2	52.0	200	1.66	42.2	1.34
EASEMENT	EXMH5A	EXMH6A	0.02	1.92	0		1	0	28	0	5.67	0	0	43.5	1.97	71.5	0.0	0.3	4.00	1.2	0.0	3.2	25.0	200	7.00	86.7	2.76

Appendix E Water Distribution Analysis

HYDRANT INSPECTION & FLOW REPORT											SUGGESTED NFPA RATING				
												BLUE	CL	ASS AA	
		Prepared By:	Prepared By: The Ontario Clean Water Agency							4460 gpm @ 20 psi (138 kPa)					
			DES EAUX		Prepared For:	SCS Consu	ulting								
					Residual Hyd	Andrew C	ruicks	hank		D	ate:	3-Aug-	22 -	Time: 8:	33 AM
HYDRANT DE	SCRIP	TION			Flow Hyd(s)	Kelly Smit	h, Kur	t Kahler							
Hydrant	ID:	457	7A		Side of Street:	N/W	N/W Make: Canada V		Canada Valve		Op	en Dir:	L	_eft	
Addre	ss:			2 Wate	erloo Court			Mc	del:	Century		La	titude:		
Locatio	on:			Marl	kham ON			Y	'ear:	NA		Lon	gitude:		
GENERAL INSPECTION OK - Good Condition FR - Future Repair Required N/A - Not Applicable CF - Component Failure									ailure						
Upper Section	ОК	FR	N/A	CF	Mid Section	ОК	FR	N/A	CF	General		ОК	FR	N/A	CF
Bonnet			\checkmark		Port Height			\checkmark		Accessibilit	ty			\checkmark	
Operating Nut			~		Caps / Nozzle	5		\checkmark		Position / He	ight			\checkmark	
Gaskets / Bolts			~		Chains			\checkmark		Paint Con	d			~	
O-Ring(s)			✓		Traffic Flange			\checkmark		Drain Port	s			~	
<u>Hyd</u>	rostatic	Leak Te	esting			Mainter	nance			<u>A</u>	uxilia	ry / Se	condar	y Valve	
Hydrant	Above	e Grade	Leak	N/A	Lubrica	te Operati	ng Nu	t	N/A	Loc	ated	/ Acce	ssible		N/A
Closed	Subs	urface L	.eak	N/A	Lubricate &	Clean Noz	zle Th	reads	N/A	Ope	erate	d/Exer	cised		N/A
Hydrant	Above	e Grade	Leak	N/A	Lubricate & Clean Cap Threads N/A				N	umbe	er of Tu	urns		N/A	
Open	Subs	urface L	.eak	N/A	Water Removed (if non-draining) N/A						Open Direction				
Comments: Auxiliary Valve Location:															

FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes	N/A	5 minutes	2389 gal	11943 gal	Yes


Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 74.56 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time

Date: 3-Aug-22 Time: 8:33 AM

		Test Hydrant								
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
379A	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi	457A	76.33	58.61
379A	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi			
455A	Pollard Diffuser	2.5"	0.832	5.0 minutes	491 gal	2453 gal	10 psi			
455A	Pollard Diffuser	2.5"	0.832	5.0 minutes	347 gal	1734 gal	5 psi			

5
4460 gpm
5256 gpm
23.21%

Comments:

August 29, 2022

Project No. 17002-148

Sent via email Miren Etxezarreta-Aranburu Hariri Pontarini Architects 235 Carlaw Avenue, Suite 301 Toronto, ON M4M 2S1 c/o SCS Consulting Group Ltd.

Subject: 7015-7200 Leslie Street Development Water Distribution Modeling City of Markham, Region of York

Dear Ms. Etxezarreta-Aranburu,

We are pleased to submit our report entitled "7015-7200 Leslie Street Development Watermain Analysis" outlining the results of our water distribution analysis for the proposed residential development in the City of Markham, Region of York.

A WaterCAD model of the immediate area was developed utilizing the design information provided to Municipal Engineering Solutions and a hydrant test performed by the Ontario Clean Water Agency in August 2022. The findings of our analysis are summarized in the following report.

We trust you find this report satisfactory. Should you have any questions or require further clarification, please call.

Yours truly,

Municipal Engineering Solutions

Kristin St-Jean, P.Eng. /KS

File Location: C:\Users\krist\Documents\Projects\17002-148 7015-7200 Leslie Street, Markham\5.0 Report\17002-148 7015-7200 Leslie Street Watermain Analysis_20220829.docx

55 Gilbank Drive, Aurora, Ontario L4G 6H9

Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

7015-7200 LESLIE STREET DEVELOPMENT

WATERMAIN ANALYSIS

PREPARED BY:

MUNICIPAL ENGINEERING SOLUTIONS

FOR:

HARIRI PONTARINI ARCHITECTS August 2022

Project Number: 17002-148

TABLE OF CONTENTS

SECTION 1 – INTRODUCTION	1
1.1 Development Background	1
Figure 1 - Proposed 7015-7200 Leslie Street Development1	
SECTION 2 – WATERMAIN DESIGN CRITERIA	2
2.1 Equivalent Population Densities & Water Design Factors	2
Table 1 – Equivalent Population Density	2
Table 2 - Water Design Factors	2
SECTION 3 –FLOW DEMANDS	2
3.1 Equivalent Population Flow Demands	
Table 3 – Water Demand for the 7015-7200 Leslie Street Development	2
3.2 Fire Flow Demands	3
Table 4 – Minimum Fire Flow Requirements	3
Table 5 – FUS Criteria/Assumptions	
3.3 External Demands	
SECTION 4 – OTHER SYSTEM REQUIREMENTS	
4.1 System Pressure Requirements	
4.2 Watermain Sizing	
4.3 Watermain C-Factor	
Table 6 - Hazen-Williams Coefficient of Roughness (C-Factors)	
SECTION 5 – ANALYSIS & MODELING RESULTS	5
5.1 Model Setup	5
5.2 Hydraulic Grade Line	5
Table 7 – Hydraulic Grade Line (HGL) at Pump Discharge	
5.3 Watermain Sizing and System Pressures	
Table 8 - Modeled Service Pressures	
SECTION 6 – CONCLUSIONS/RECOMMENDATIONS	6

APPENDICES

Appendix A	Demands
Appendix B	Boundary Information
Appendix C	Model Results

Section 1 – INTRODUCTION

Municipal Engineering Solutions ("MES") was retained by Hariri Pontarini Architects to conduct a hydraulic water analysis for the proposed development located at 7015-7200 Leslie Street in the City of Markham (Region of York). As part of this hydraulic assessment MES was requested to undertake the following:

- 1. Calculate/verify water demands for the proposed development using City of Markham, provincial and industry design standards;
- 2. Create a water model of the immediate area using boundary conditions from a hydrant test;
- 3. Run the model to size the subject mains to achieve service criteria during Minimum Hour, Peak Hour and fire flow during Maximum Day demand; and
- 4. Prepare a Report summarizing the modeling results for agency review and design purposes.

1.1 Development Background

The development site is located on the west side of Leslie Street, north of Waterloo Court in the City of Markham. The development consists of a National Building (mixed use - institutional/residential), a Place of Worship, a Welcome Center outside the Place of Worship and a Visitor Center. The Visitor Center is an existing one-storey log cabin that will be modified to include an addition and servicing. The breakdown of the buildings is shown in **Appendix A**. The proposed development is shown below on **Figure 1**.

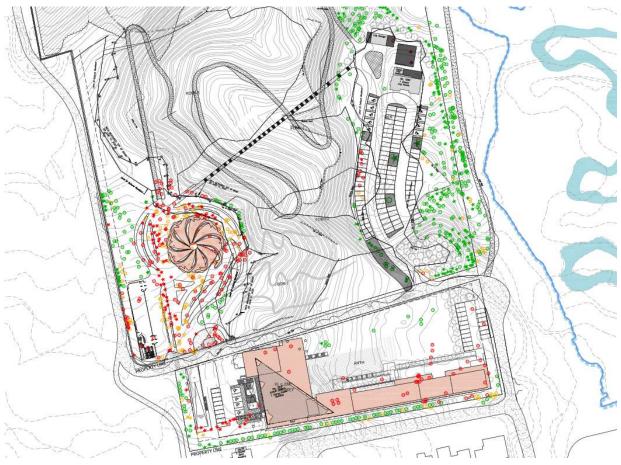


Figure 1 - Proposed 7015-7200 Leslie Street Development

Section 2 – WATERMAIN DESIGN CRITERIA

The design criteria utilized to estimate the water demands for the hydraulic water model follows general industry standards and is calculated using the design criteria and guidelines outlined in the City of Markham Design Criteria, the Ministry of the Environment, Conservation and Parks (MECP) Watermain Design Criteria and the Fire Underwriters Survey.

The following sections summarize the specific design criteria used to carry out the hydraulic watermain assessment for this development.

2.1 Equivalent Population Densities & Water Design Factors

To calculate the equivalent population and water design factors for this development MES used City of Markham standard residential population densities as noted in the City of Markham Engineering Design Criteria (June 2013, Rev 2). **Table 1** summarizes the residential population densities and **Table 2** summarizes the average daily demand and peaking factors used for this analysis.

Type of Development	Equivalent Population				
Mixed Use	330 Persons/m ² floor area				
Institutional	60 Persons/Ha of site area				
Source: City of Markham Design Criteria, June 2013					

Table 1 – Equivalent Population Density

Table 2 - Water Design Factors

Type of De	velopment	Average Daily Demand	Minimum Hourly Demand Peaking Factor	Maximum Daily Demand Peaking Factor	Peak Hourly Demand Peaking Factor
Mixed Use (Residential)	365 L/capita/day	0.7	2.0	4.5
Mixed Use (No	n-Residential)	365 L/capita/day	0.7	1.4	2.5

Source: City of Markham Design Criteria, June 2013

Section 3 – FLOW DEMANDS

Utilizing the equivalent population data from Table 1 and the corresponding Minimum Hour, Maximum Day and Peak Hour data from Table 2 the water demands for this development were calculated.

3.1 Equivalent Population Flow Demands

The calculated demands for the development are summarized in **Table 3**. For additional details on the development water demands and assigned demand nodes used in the water model see **Appendix A**.

Table 3 – Water Demand for the 7015-7200 Leslie Street Development

	Average Day	Minimum Hour	Maximum Day	Peak Hour
	Demand (L/s)	Demand (L/s)	Demand (L/s)	Demand (L/s)
Demands	1.79	1.24	2.94	5.90

3.2 Fire Flow Demands

The fire demands for this development were calculated using the Fire Underwriters Survey ("FUS") formula outlined in the 'Water Supply For Public Fire Protection Guideline', dated 2020. The minimum required fire flows assumed for this development are summarized in **Table 4**. Details on the calculations are included in **Appendix A**.

Type of Development	Fire Flow (L/S)
National Center	117
Place of Worship	117
Welcome Center	133
Log Cabin/Visitor Center	117

Table 4 – Minimum Fire Flow Requirements

Source: Fire Underwriters Survey, 2020

As noted, the fire flows in Table 4 above are calculated using the FUS formula. Table 5 below summarizes the criteria utilized to develop the fire flow requirements as well as the assumptions made. The National Center will be of concrete construction and fully sprinklered. The Place of Worship will be fully sprinklered and the construction type is not yet known, therefore it was assumed to be wood-frame construction. The existing log cabin and additions were assumed to be one fire area for the purposes of the FUS calculation, all wood-frame construction.

Once the detailed design data (specifics) for these building(s) are known the assumptions noted in Table 5 must be reviewed and confirmed by the appropriate designer (architect or sprinkler system designer) and any design/criteria changes required are to be reported to MES. Regardless, the building construction, internal piping and sprinkler systems will all need to be designed to suit the available flow and pressure.

Table 5 – FUS Criteria/Assumptions

	Type of Development				
	National Center	Place of Worship	Welcome Center	Log Cabin/Visitor	
Type of Construction	Noncombustible Construction	Unknown (Assumed to be Wood Frame Construction)	Unknown (Assumed to be Wood Frame Construction)	Wood Frame Construction	
Occupancy Type	Limited Combustible	Combustible	Combustible	Combustible	
Fire Protection (Sprinkler/Firewalls)	Sprinklered	Sprinklered	None	None	
Area Considered	Total Building Area 5,163 m ²	Total Building Area 971 m²	Total Building Area 446 m²	Total Building Area (existing and proposed) 485 m ²	

Note: For Additional Information on FUS Criteria Refer to Water Supply for Public Protection Guide, Fire Underwriters Survey, 2020

3.3 External Demands

The hydrant test results would have considered the demands external to the development.

Section 4 – OTHER SYSTEM REQUIREMENTS

4.1 System Pressure Requirements

In addition to meeting the various flow requirements, the system must also satisfy minimum and maximum pressure requirements as outlined by the City. The City's pressure requirements are outlined in the Standard Guidelines and stipulate the following:

- 1. The maximum system pressure under static load or during minimum hourly demand shall be 650 kPa (95 psi).
- The minimum system pressure when the system is tested for fire flow during peak daily flow shall be 140 kPa (20 psi).
- 3. The minimum pressure during peak hourly demand shall be 300 kPa (44 psi).
- 4. The normal method of reduction of pressures to comply with the Ontario Building Code (reduction of pressures to 550 kPa, 80 psi) is by pressure reducing valves to be installed on individual services.
- 5. The maximum recommended static pressure shall be 650 kPa (95 psi). In no case can the pressure on the system exceed 700 kPa (100 psi).

4.2 Watermain Sizing

The City of Markham stipulates a minimum pipe size of 150 mm diameter for residential developments and requires that all watermains are adequately sized to maintain demand flows at the required pressures without causing excessive energy loss or result in water quality decay. The watermain system must therefore be designed to accommodate the greater of the following:

- Maximum day plus fire demand
- Peak hour demand

The minimum pipe size for commercial and industrial areas shall be 300 mm diameter and for residential areas the minimum pipe size shall be 150 mm diameter. For distribution systems providing fire protection the minimum pipe size shall be 150 mm diameter in accordance with Ministry of the Environment, Conservation and Parks (MECP) and NFPA requirements.

To provide appropriate fire protection, reliable supply and pressures the water distribution system should be looped wherever possible to improve supply security and water quality.

4.3 Watermain C-Factor

In designing and modeling of the pipes the Coefficient of Roughness (C-Factor) factors from the City's design criteria and as suggested by the MECP were utilized. The Coefficient of Roughness assigned to each pipe size is summarized in **Table 6** below.

Coefficient of Roughness (C)
100
110
120
130

Table 6 - Hazen-Williams Coefficient of Roughness (C-Factors)

Source: City of Markham Engineering Design Criteria June 2013

Section 5 – ANALYSIS & MODELING RESULTS

In order to conduct the hydraulic water analysis for the proposed development the water demands were estimated by MES using the design criteria previously discussed and a WaterCAD model of the immediate area was developed using boundary conditions from a hydrant test. The following sections discuss the model setup and results.

5.1 Model Setup

A hydrant test was performed on Leslie Street/Waterloo Court by the Ontario Clean Water Agency on August 3rd, 2022. The hydrant test results are included in **Appendix B**.

The buildings will be serviced from an extension of the existing 300mm watermain on Leslie Street.

The development was modeled under the existing planning scenario only. The finished floor elevations of the buildings range from approximately 156.5 to 178.0 m. Friction factor for all new pipes added to the model were assigned according to Table 6. Fire flows were based on the FUS formula.

5.2 Hydraulic Grade Line

The model was setup with a dummy pump and reservoir, set at ground elevation, and a hydrant curve was added to the pump to match the results of the hydrant tests. To check the adequacy of the pump curve entered in to the model, a simulated hydrant curve (modeled flow) at the location of the hydrant test (Node J-4) was graphed against the data points of the actual hydrant test. The comparison graph is included in **Appendix B**.

The Hydraulic Grade Line (HGL) generated for each of the various demand scenarios is summarized in **Table 7**. The HGL listed is the HGL of the "pump" discharge (Pump P-1).

Scenario	HGL at Pump Discharge	
Average Day	213.83	
Minimum Hour	213.83	
Maximum Day	213.82	
Peak Hour	213.80	
Maximum Day + Fire	204.30	

Table 7 – Hydraulic Grade Line (HGL) at Pump Discharge
--

The pump tables and the pump curve for Pump P-1 are attached to this report in Appendix C.

5.3 Watermain Sizing and System Pressures

The analysis was conducted under existing servicing conditions for Minimum Hour, Maximum Day, Peak Hour and Maximum day plus Fire demands to size the watermains and meet the pressure requirements. The proposed watermain layout is shown in **Appendix A**.

Modeled service pressures for the development are summarized in **Table 8**. All pressures lie within the required operating range under minimum hour, maximum day, maximum day plus fire flow and peak hour. Since modeling was done using a single demand scenario for boundary conditions (hydrant test), it is anticipated that pressures will be lower during peak hour and higher during minimum hour than indicated in the modeling.

Detailed pipe and node tables are attached to this report in Appendix C.

Scenario	Average Day	Minimum Hour	Maximum Day	Peak Hour	Max. Day + Fire
Results	351 – 561 kPa	351 – 561 kPa	351 – 560 kPa	350 – 558 kPa	163 to 199 L/s
	(50.9 to 81.3 psi)	(50.9 to 81.4 psi)	(50.8 to 81.3 psi)	(50.8 to 80.9 psi)	@ 140 kPa

Table 8 - Modeled Service Pressures

There is an existing hydrant at the end of the cul-de-sac on Waterloo Court where the modelling indicates that the City's minimum fire flow requirement of 117 L/s (7,000 L/min) will not be met. This is an existing condition and the addition of the proposed watermain does not have any significant impact on the available fire flow at this location.

The modelling indicates that pressures are expected to exceed 550 kPa at the log cabin building. A pressure reducing valve may be required on the domestic service to this building to comply with the Ontario Building Code.

Section 6 – CONCLUSIONS/RECOMMENDATIONS

The proposed watermain layout for the 7015-7200 Leslie Street Development can achieve hydraulic requirements as prescribed by the City of Markham watermain design criteria as summarized below.

- The service pressures from the proposed watermain layout are expected to range between 350 kPa to 561 kPa (50.8 psi to 81.4 psi). Pressures are expected to be lower during peak hour and higher during minimum hour than indicated in the modeling.
- The available fire flow meets or exceeds the minimum fire flow demands utilized for this assessment at the minimum pressure of 140 kPa based on the proposed watermain configuration and assumptions made within this report but must be confirmed when additional building information becomes available.
- The modelling indicates that the City's minimum fire flow requirement of 117 L/s (7,000 L/min) will not be met at the west end of Waterloo Court cul-de-sac. This is an existing condition and the addition of the proposed development does not have any significant impact on the available fire flow at this location (i.e. 86 L/s existing vs 85 L/s post development).
- The modeling indicates that pressures are expected to exceed 550 kPa (80 psi) at the log cabin building. A pressure reducing valve may be required on the domestic service to this building to comply with the Ontario Building Code.
- The FUS criteria summarized in Table 5 and Appendix A, including all assumptions and building configurations, must be reviewed and confirmed by the designer(s), architect and mechanical consultant when additional information becomes available to ensure the criteria used to calculate the fire flows within this report are still valid prior to implementation and construction.
- Confirmation and/or changes to the criteria should also be provided to and reviewed with MES prior to the finalization of the detailed design drawings and construction of the watermain system. Final design parameters are to be provided to MES prior to construction for further review to confirm that the actual (final) site conditions and building design(s) reflect those modeled by MES within this report.
- The hydrant tests used for the boundary conditions provides a snapshot of the system performance and does not capture the system variation as accurately as boundary information from a calibrated model or system monitoring. The City of Markham must confirm that the results presented in this report are in keeping with the pressures currently measured in the area.
- This report, including all modeling assumptions used, is to be submitted to and reviewed by the water operating authority (municipality) to confirm that the modeling parameters used are acceptable to the operating authority and/or confirm if modified domestic or fire flow requirements are required or should be implemented for this particular development.

Appendix A

D e m a n d s

Markham Design Criteria Engineering Design Criteria, June 2013 Revision 2 (unless otherwise stated)

Equivalent Population by Area

Type of Development	Equivalent Population Density	
	(Person/Hectare)	
Schools/Instututional	60	
Light Industrial Areas	70	
Offices	150	
Commercial Retail	100	
Heavy Industrial Areas	First Principles	
Mixed Uses	330	

Water Design Factors

Average Daily Demand (m ³ /capita/day)	0.365
Minimum Hour Demand P.F.	0.7
Maximum Daily Demand P.F.	
Residential	2
Non-Residential	1.4
Maximum Hourly Demand P.F.	
Residential (p.m.)	4.5
Non-Residential (a.m.)	2.5

Coefficient of Roughness

Size of Pipe (mm Dia.)	Coefficient of Roughness (C)
150	100
200-250	110
300-600	120
Over 600	130

Minimum Pipe Size

Type of Development	Size of Pipe (mm Dia.)
Residential	150
Commercial/Industrial/Community	300

Working Pressures

Parameter	Pressure						
Normal Condition							
Minimum Max Hour Pressure	300 kPa (44 psi)						
Maximum (Building Code)	550 kPa (80 psi)						
Maximum recommended	650 kPa (95 psi)						
Fire Flow Conditions							
Minimum Pressure	140 kPa (20 psi)						

Proposed Development

		Elevation			Equivalent	Demands				
Node	Description	Elevation	Mixed Use		Total Population	Total Population	Avg Day	Min Hour	Max Day	Peak Hour
			(sq.m)	(site Ha)	(Residential)	(Non-Residential)	(L/s)	(L/s)	(L/s)	(L/s)
J-13	National Center	170.00	5163.0	-	170	0	0.72	0.50	1.44	3.23
J-17	Place of Worship + Welcome Center	178.00	-	2.790	0	167	0.71	0.49	0.99	1.76
J-8	Log Cabin + Visitor Center	156.46	-	1.430	0	86	0.36	0.25	0.51	0.91
		TOTAL	5163	4.220	170	253	1.79	1.24	2.94	5.90

National Center - 330 persons/sq.m floor area Place of Worship and Log Cabin - 60 persons/Ha

	ON	CULAT	FUS CAL		
Center (Institutional/Residential Sprinklered	Fype/Block # Natic Sprinkler: f Units/Unit #'s	reet Development	7015-7200 Leslie Str 17002-148 City of Markham August 2022	•	
					0 FUS Formula
basements at	of construction; and	o the type o	required fire flow in l coefficient related t Total Effective Floo 0% below grade) ^a	C = the A = the	$RFF = 220C\sqrt{2}$
ve Area ^a	Group C Noncombustible Co 2775.0 sq. metre 0.8 5163.0 Total Effe 13000 L/min (rot	Decupancy Instruction ^b otprint area C = A = F =	Type of Cor		
				ljustment	0 Occupancy Adj
ble	Limited Combi -0.15 -1950 L/min 11050 L/min	ccupancy ^c Allowance Fire Flow	Hazard		
				stment	0 Sprinkler Adjus
	4420 L/min	l kler Credit	30% 10% 0% Sprint	r Supply YES d system NO	NFPA 13 sprinkl Standard Water Fully Supervised
				istment	0 Exposure Adjus
	ed openings)	Total*	ilding Face: Type II Percent over 30 0% 20.1 to 30 over 100 4% 0ver 30 0% 0ver 30 0%	pe of the Exposed Bui stance to Building (m) t) by height in storeys stance to Building (m) t) by height in storeys stance to Building (m) t) by height in storeys stance to Building (m) t) by height in storeys	North Side Dist Length (ft) South Side Dist Length (ft) East Side Dist Length (ft) West Side Dist
		*max 75%	_		
	440 L/min	Surcharge	Exposures \$		
	7000 L/min 117 L/sec	re Flow (rounded)	tal Required Fi	Tot	
elow 1.0 (vertical openings are inadec he vertical openings and exterior vert rs.	7000 L/min 117 L/sec swith a construction coefficitient up to a maximum of eigh	Surcharge re Flow (rounded) reas. For building rediately above th	na over 30 na 0% Exposures \$ tal Required Final 1.5, consider 100% of all floor and s 50% of each of any floors imm	t) by height in storeys stance to Building (m) t) by height in storeys To 1	Length (ft) West Side Dist Length (ft) a) For buildings with a cons protected), consider the

b) Wood Frame=1.5, Mass Timber= 0.8 to 1.5, Ordinary=1.0, Noncombustible=0.8, Fire-Resistive=0.6

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

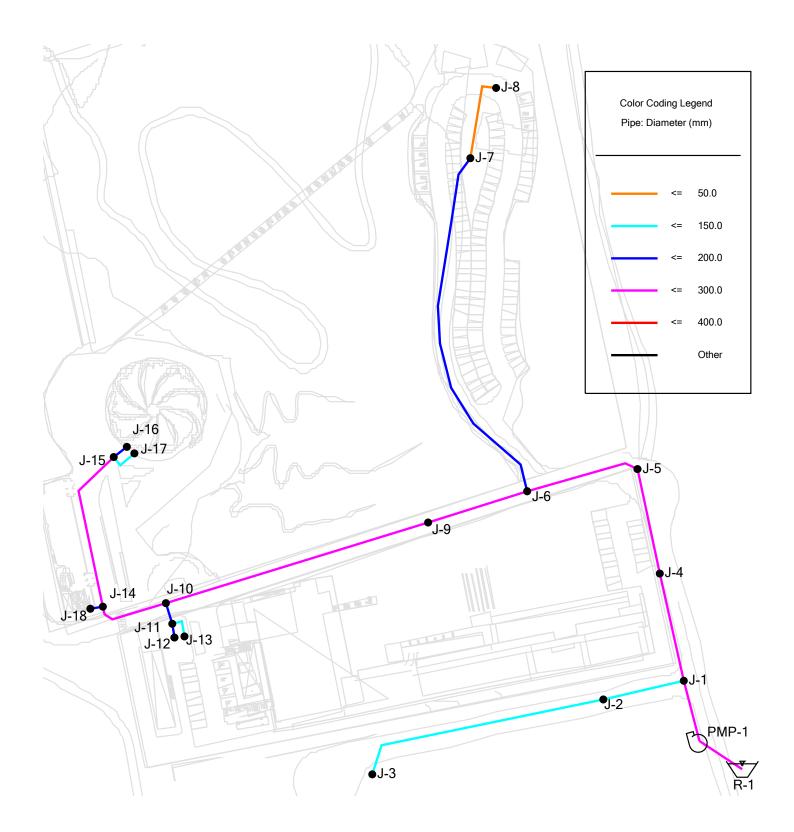
Calculations are based on "Water Supply for Public Fire Protection Guide" by Fire Underwriters Survey Dated 2020

		FUS CA	LCULATI	ON	
-	ct Number: ct Location:	7015-7200 Leslie Street Development 17002-148 City of Markham August 2022	Firewalls/S	ype/Block # Sprinkler: f Units/Unit #'s	Place of Worship Sprinklered
1.0	FUS Formula				
RF	$F = 220C_{\rm N}$	C = the Coefficient related A = the Total Effective Floo least 50% below grade) ^a	to the type o or Area in squ	f construction; and lare metres (excluding basements	at
		Type of Co	Occupancy nstruction ^b otprint area Storeys C = A = F =	Group A Wood Frame Construction (Ty 971.0 sq. metres 1 1.5 971.0 Total Effective Area ^a 10000 L/min (rounded)	pe V)
2.0	Occupancy Ac	-	C.		
		Hazaro	occupancy ^c I Allowance I Fire Flow	Combustible 0 0 L/min 10000 L/min	
3.0	Sprinkler Adju	stment			
	NFPA 13 sprink Standard Wate Fully Supervise	r Supply YES 10% 40% d system NO 0% Sprin	kler Credit	4000 L/min	
4.0	Exposure Adju	istment			
	North Side Dis Length (f South Side Dis	te of the Exposed Building Face: Type V Percent stance to Building (m) over 30 by height in storeys na stance to Building (m) over 30 by height in storeys na		ed openings)	
	Dis Length (f <i>West Side</i> Dis	tance to Building (m) over 30 by height in storeys na 0% tance to Building (m) 20.1 to 30 by height in storeys na 10%	-		
		Exposures	_	1000 L/min	
		Total Required F	(rounded)	7000 L/min 117 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

	I fire flow in l ient related t iffective Floo w grade) ^a NBC C	Firewalls/ Number o	f Units/Unit #'s	Welcome Center/Washroom Non
C = the Coeffic A = the Total E	ient related t ffective Floo w grade) ^a NBC 0	o the type o	f construction; and	basements at
C = the Coeffic A = the Total E	ient related t ffective Floo w grade) ^a NBC 0	o the type o	f construction; and	basements at
		Decupancy Instruction ^b Instruction ^b Instruction ^b Storeys C = C = A = F =	Group A Wood Frame Constru- 446.0 sq. metres 1 1.5 446.0 Total Effectiv 7000 L/min (rounded)	ve Area ^a
ment				
	Hazard	Allowance	Combustible 0 0 L/min 7000 L/min	
ent				
oply NO	0% 0% 0% Sprink	ler Credit	0 L/min	
ent				
e to Building (m) ove height in storeys e to Building (m) ove height in storeys e to Building (m) 20.1 to height in storeys e to Building (m) ove	Percent r 30 na 0% r 30 na 0% 0 30 na 10%	Total*	ed openings)	
	Exposures S	*max 75% Surcharge	700 L/min	
	•		8000 L/min 133 L/sec	
	pply NO stem NO stem NO eent Image: stem of the exposed Building Farmer of the exposed Building Farmer of the exposed Building (m) over height in storeys ee to Building (m) over over over over over over over over	Type of Ou Hazard Adjusted ent Credit Total standard NO 0% oply NO 0% stem NO 0% Sprint Total Sprint Total Sprint Total colspan="2">Credit Sprint Total colspan="2">Sprint Total colspan="2">Credit Total colspan="2">Credit Sprint Total colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2"Colspan="2">Colspan="2"Colspan="	ment Type of Occupancy ^c Hazard Allowance Adjusted Fire Flow ent Credit Total tandard NO 0% 0% opply NO 0% 0% ostem NO 0% 0% stem NO 0% 0% Sprinkler Credit f the Exposed Building Face: Type V (unprotected ret to Building (m) over 30 0% height in storeys na 0% height in	Imment Type of Occupancy ^c Hazard Allowance Combustible 0 Adjusted Fire Flow 7000 L/min Adjusted Fire Flow 7000 L/min ent Sprinkler Credit 0 L/min Sprinkler Credit 0 L/min fthe Exposed Building Face: Type V (unprotected openings) reate to Building (m) over 30 0% height in storeys na 0% te to Building (m) over 30 0% te to Building (m) over 30 0% height in storeys na 10% te to Building (m) over 30 0% te to Building (m) over 30 0% height in storeys na 10% trace to Building (m) over 30 0% te to Building (m) over 30 0%

_



least 50% below grade) ^a NBC Type of Ca Fo	Firewalls/ Number of litres per mi to the type of	/Sprinkler: of Units/Unit #'s of construction; and quare metres (excluding basements at Group A Wood Frame Construction (Type 485.0 sq. metres 1 1.5	
C = the Coefficient related A = the Total Effective Flo least 50% below grade) ^a NBC Type of Co Fo	to the type of for Area in so Occupancy postruction ^b potprint area Storeys C = A =	of construction; and quare metres (excluding basements at Group A Wood Frame Construction (Type 485.0 sq. metres 1 1.5 485.0 Total Effective Area ^a	
C = the Coefficient related A = the Total Effective Flo least 50% below grade) ^a NBC Type of Co Fo	to the type of for Area in so Occupancy postruction ^b potprint area Storeys C = A =	of construction; and quare metres (excluding basements at Group A Wood Frame Construction (Type 485.0 sq. metres 1 1.5 485.0 Total Effective Area ^a	
Type of Co Fo	onstruction ^b ootprint area Storeys C = A =	Wood Frame Construction (Type 485.0 sq. metres 1 1.5 485.0 Total Effective Area ^a	V)
Hazar	Dccupancy ^c d Allowance d Fire Flow	Combustible 0 0 L/min 7000 L/min	
NO 0% 0%	nkler Credit	0 L/min	
Perce ilding (m) over 30 in storeys na 0% ilding (m) over 30		ted openings)	
in storeys na	0%		
in storeys na	_		
	*max 75% Surcharge	0 L/min	
Total Required F	(rounded)	7000 L/min 117 L/sec	
	Credit Total d NO 0% NO 0% 0% NO 0% 0% Sprin Sprin cposed Building Face: Type V Perce Perce uilding (m) over 30 in storeys na uilding (m) over 30 in storeys na uilding (m) over 30 in storeys na uilding (m) over 30 o% over 30 in storeys na cover 30 0% uilding (m) over 30 ow na uilding (m) over 30 ow na ow ma uilding (m) over 30 ow na uilding (m) over 30 ow	d NO 0% NO 0% 0% Sprinkler Credit uilding (m) over 30 0% in storeys na of colspan="2	Adjusted Fire Flow 7000 L/min Image: Credit Total Image: Type V (unprotected openings) Image: Sprinkler Credit O L/min Image: Sprinkler Credit Total Image: Type V (unprotected openings) Image: Sprinkler Credit Total Image: Sprinkler Credit Image: Sprinkler C

_

Pipe and Node IDs

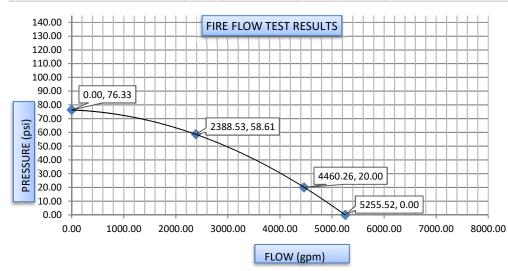
Appendix B

Boundary Information

	HYDRANT INSPECTION & FLOW REPORT										SUGGESTED NFPA RATING				IG
												BLUE	CL	ASS AA	
			AGENC		Prepared By:	The Ontai	rio Clea	an Wate	r Agenc	Σ γ	446	0 gpm	@ 20	osi (138	kPa)
			DES EAUX		Prepared For:	SCS Consu	ulting								
					Residual Hyd	Andrew C	ruicks	hank		D	ate:	3-Aug-	22 -	Time: 8:	33 AM
HYDRANT DE	SCRIP	TION			Flow Hyd(s)	Kelly Smit	h, Kur	t Kahler							
Hydrant ID: 457A					Side of Street:	N/W		Make: Ca		Canada Valve		Op	en Dir:	L	_eft
Address: 2 Wat					erloo Court			Mc	del:	Century		La	titude:		
Location: Mar					kham ON			Y	'ear:	NA		Lon	gitude:		
<u>GENERAL INSPECTION</u> OK - Good Condition FR - Future Repair Required N/A - Not Applicable CF							- Comp	onent Fo	ailure						
Upper Section	ОК	FR	N/A	CF	Mid Section	ОК	FR	N/A	CF	General		ОК	FR	N/A	CF
Bonnet			\checkmark		Port Height			\checkmark		Accessibilit	ty			\checkmark	
Operating Nut			~		Caps / Nozzle	5		\checkmark		Position / He	ight			\checkmark	
Gaskets / Bolts			~		Chains			\checkmark		Paint Con	d			~	
O-Ring(s)			✓		Traffic Flange			\checkmark		Drain Port	s			~	
<u>Hyd</u>	rostatic	Leak Te	esting			Mainter	nance			Auxiliary / Secondary Valve					
Hydrant	Above	e Grade	Leak	N/A	Lubrica	te Operati	ng Nu	t	N/A	Loc	ated	/ Acce	ssible		N/A
Closed	Subs	urface L	.eak	N/A	Lubricate &	Clean Noz	zle Th	reads	N/A	Ope	erate	d/Exer	cised		N/A
Hydrant	Above	e Grade	Leak	N/A	Lubricate &	k Clean Ca	p Thre	ads	N/A	N	umbe	er of Tu	urns		N/A
Open	Subs	urface L	.eak	N/A	Water Remo	oved (if no	on-drai	ning)	N/A	C	pen	Directi	on		
Comments:										Auxiliary Valv	e Loo	cation:			

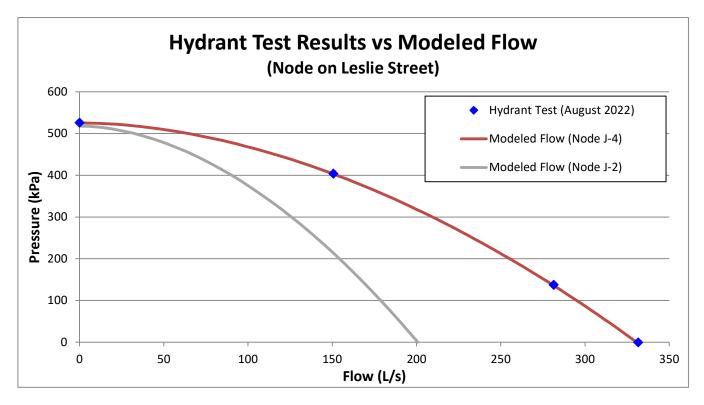
FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes	N/A	5 minutes	2389 gal	11943 gal	Yes

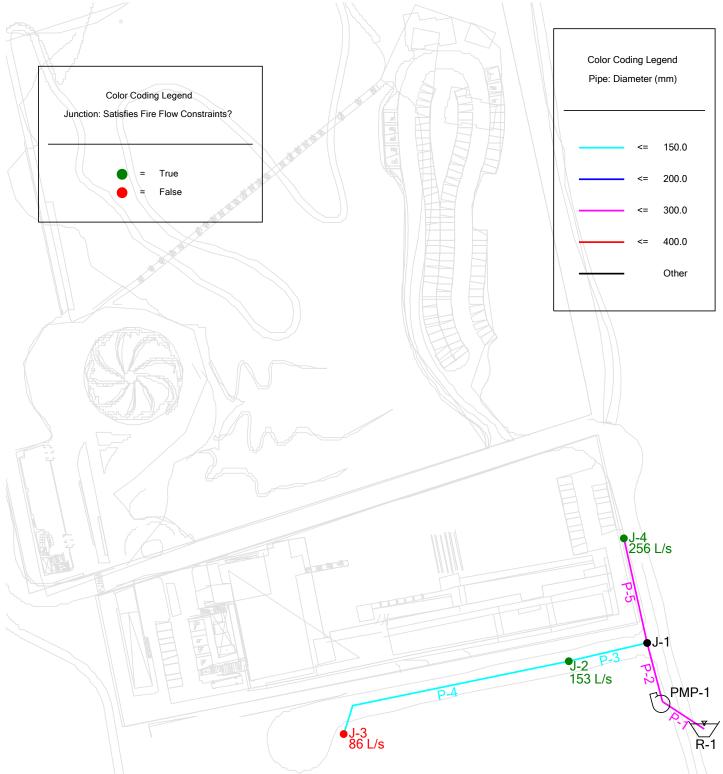

Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 74.56 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time


Date: 3-Aug-22 Time: 8:33 AM

			Test Hydrant							
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
379A	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi	457A	76.33	58.61
379A	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi			
455A	Pollard Diffuser	2.5"	0.832	5.0 minutes	491 gal	2453 gal	10 psi			
455A	Pollard Diffuser	2.5"	0.832	5.0 minutes	347 gal	1734 gal	5 psi			


Calculated Results							
4460 gpm							
5256 gpm							
23.21%							

Comments:

	Static Pressure	Residual Pressure	Test Flow	Theoretical Flow at 140 kPa
	(kPa)	(kPa)	(L/s)	(L/s)
Hydrant Test	526.3	404.1	150.7	281.4
Model	525.6	406.4	148.5	278.3

Existing System Available Fire Flow

			Fire Flow Table				
ID	Fire Flow Demand	Total Demand	Total Available Flow	Available Fire Flow	Fire Flow Met?	Notes	
U	(L/s)	(L/s)	(L/s)	(L/s)	FILE FIOW MEL!	Notes	
J-2	117.00	117.00	152.58	152.58	TRUE	Existing Hydrant	
J-3	117.00	117.00	85.53	85.53	FALSE	Existing Hydrant	
J-4	117.00	117.00	256.29	256.29	TRUE	Existing Hydrant	

MIN	85.53
MAX	256.29

Appendix C

Model Results

	I	Node Table		
ID	Demand	Elevation	Head	Pressure
שו	(L/s)	(m)	(m)	(kPa)
J-1	0.00	160.20	213.83	524.84
J-2	0.00	160.91	213.83	517.89
J-3	0.00	167.70	213.83	451.44
J-4	0.00	160.13	213.83	525.52
J-5	0.00	159.83	213.83	528.46
J-6	0.00	161.47	213.83	512.40
J-7	0.00	156.97	213.83	556.44
J-8	0.36	156.46	213.77	560.85
J-9	0.00	163.80	213.83	489.60
J-10	0.00	170.54	213.83	423.63
J-11	0.00	170.00	213.83	428.92
J-12	0.00	170.00	213.83	428.92
J-13	0.72	170.00	213.83	428.91
J-14	0.00	174.33	213.83	386.54
J-15	0.00	178.00	213.83	350.62
J-16	0.00	178.00	213.83	350.62
J-17	0.71	178.00	213.83	350.62
J-18	0.00	176.00	213.83	370.20
MIN		156.46		350.62
MAX		178.00		560.85

A۱	verage Day						
			Pip	e Table			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
	FIOIII NOUE	TO NOUE	(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	18.21	300.0	120.0	1.79	0.03
P-2	PMP-1	J-1	22.18	300.0	120.0	1.79	0.03
P-3	J-1	J-2	29.39	150.0	100.0	0.00	0.00
P-4	J-2	J-3	91.46	150.0	100.0	0.00	0.00
P-5	J-1	J-4	39.13	300.0	120.0	1.79	0.03
P-6	J-4	J-5	38.02	300.0	120.0	1.79	0.03
P-7	J-5	J-6	41.08	300.0	120.0	1.79	0.03
P-8	J-6	J-7	131.21	200.0	110.0	0.36	0.01
P-9	J-7	J-8	30.84	50.0	100.0	0.36	0.18
P-10	J-6	J-9	36.98	300.0	120.0	1.43	0.02
P-11	J-9	J-10	97.67	300.0	120.0	1.43	0.02
P-12	J-10	J-11	7.72	200.0	110.0	0.72	0.02
P-13	J-11	J-12	4.93	200.0	110.0	0.00	0.00
P-14	J-11	J-13	8.97	150.0	100.0	0.72	0.04
P-15	J-10	J-14	25.95	300.0	120.0	0.71	0.01
P-16	J-14	J-15	59.46	300.0	120.0	0.71	0.01
P-17	J-15	J-16	5.91	200.0	110.0	0.00	0.00
P-18	J-15	J-17	10.28	150.0	100.0	0.71	0.04
P-19	J-14	J-18	4.48	200.0	110.0	0.00	0.00

Velocity

(m/s)

0.02 0.02

0.00

0.00

0.02

0.02 0.02

0.01

0.13

0.01

0.01

0.02

0.00

0.03

0.01

0.01

0.00

0.03

0.00

1.24

1.24

0.00

0.00

1.24

1.24

1.24 0.25

0.25

0.99

0.99

0.50

0.00

0.50

0.49

0.49

0.00

0.49 0.00

					Ν	/linimum Hour					
		Node Table						Pip	e Table		
10	Demand	Elevation	Head	Pressure			To Nodo	Length	Diameter	Roughness	Flow
ID	(L/s)	(m)	(m)	(kPa)	ID	From Node	To Node	(m)	(mm)	(C)	(L/s)
J-1	0.00	160.20	213.83	524.85	P-1	R-1	PMP-1	18.21	300.0	120.0	1.24
J-2	0.00	160.91	213.83	517.90	P-2	PMP-1	J-1	22.18	300.0	120.0	1.24
J-3	0.00	167.70	213.83	451.45	P-3	J-1	J-2	29.39	150.0	100.0	0.0
J-4	0.00	160.13	213.83	525.54	P-4	J-2	J-3	91.46	150.0	100.0	0.0
J-5	0.00	159.83	213.83	528.47	P-5	J-1	J-4	39.13	300.0	120.0	1.24
J-6	0.00	161.47	213.83	512.42	P-6	J-4	J-5	38.02	300.0	120.0	1.24
J-7	0.00	156.97	213.83	556.46	P-7	J-5	J-6	41.08	300.0	120.0	1.24
J-8	0.25	156.46	213.80	561.16	P-8	J-6	J-7	131.21	200.0	110.0	0.2
J-9	0.00	163.80	213.83	489.62	P-9	J-7	J-8	30.84	50.0	100.0	0.2
J-10	0.00	170.54	213.83	423.65	P-10	J-6	J-9	36.98	300.0	120.0	0.99
J-11	0.00	170.00	213.83	428.94	P-11	J-9	J-10	97.67	300.0	120.0	0.99
J-12	0.00	170.00	213.83	428.94	P-12	J-10	J-11	7.72	200.0	110.0	0.50
J-13	0.50	170.00	213.83	428.94	P-13	J-11	J-12	4.93	200.0	110.0	0.0
J-14	0.00	174.33	213.83	386.56	P-14	J-11	J-13	8.97	150.0	100.0	0.50
J-15	0.00	178.00	213.83	350.64	P-15	J-10	J-14	25.95	300.0	120.0	0.49
J-16	0.00	178.00	213.83	350.64	P-16	J-14	J-15	59.46	300.0	120.0	0.49
J-17	0.49	178.00	213.83	350.64	P-17	J-15	J-16	5.91	200.0	110.0	0.0
J-18	0.00	176.00	213.83	370.22	P-18	J-15	J-17	10.28	150.0	100.0	0.49
					P-19	J-14	J-18	4.48	200.0	110.0	0.0
MIN		156.46		350.64							
MAX		178.00		561.16							

					N	laximum Day						
		Node Table						Pip	e Table			
ID	Demand	Elevation	Head	Pressure	ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
U	(L/s)	(m)	(m)	(kPa)		FIOIII NOUE	TO NOUE	(m)	(mm)	(C)	(L/s)	(m/s)
J-1	0.00	160.20	213.82	524.79	P-1	R-1	PMP-1	18.21	300.0	120.0	2.94	0.04
J-2	0.00	160.91	213.82	517.84	P-2	PMP-1	J-1	22.18	300.0	120.0	2.94	0.04
J-3	0.00	167.70	213.82	451.39	P-3	J-1	J-2	29.39	150.0	100.0	0.00	0.00
J-4	0.00	160.13	213.82	525.47	P-4	J-2	J-3	91.46	150.0	100.0	0.00	0.00
J-5	0.00	159.83	213.82	528.40	P-5	J-1	J-4	39.13	300.0	120.0	2.94	0.04
J-6	0.00	161.47	213.82	512.35	P-6	J-4	J-5	38.02	300.0	120.0	2.94	0.04
J-7	0.00	156.97	213.82	556.38	P-7	J-5	J-6	41.08	300.0	120.0	2.94	0.04
J-8	0.51	156.46	213.71	560.27	P-8	J-6	J-7	131.21	200.0	110.0	0.51	0.02
J-9	0.00	163.80	213.82	489.54	P-9	J-7	J-8	30.84	50.0	100.0	0.51	0.26
J-10	0.00	170.54	213.82	423.57	P-10	J-6	J-9	36.98	300.0	120.0	2.43	0.03
J-11	0.00	170.00	213.82	428.85	P-11	J-9	J-10	97.67	300.0	120.0	2.43	0.03
J-12	0.00	170.00	213.82	428.85	P-12	J-10	J-11	7.72	200.0	110.0	1.44	0.05
J-13	1.44	170.00	213.82	428.84	P-13	J-11	J-12	4.93	200.0	110.0	0.00	0.00
J-14	0.00	174.33	213.82	386.48	P-14	J-11	J-13	8.97	150.0	100.0	1.44	0.08
J-15	0.00	178.00	213.82	350.56	P-15	J-10	J-14	25.95	300.0	120.0	0.99	0.01
J-16	0.00	178.00	213.82	350.56	P-16	J-14	J-15	59.46	300.0	120.0	0.99	0.01
J-17	0.99	178.00	213.82	350.55	P-17	J-15	J-16	5.91	200.0	110.0	0.00	0.00
J-18	0.00	176.00	213.82	370.13	P-18	J-15	J-17	10.28	150.0	100.0	0.99	0.06
		· · · · · ·			P-19	J-14	J-18	4.48	200.0	110.0	0.00	0.00
MIN		156.46		350.55		1					•	
MAX		178.00		560.27								

		Node Table		
	Demand	Elevation	Head	Pressure
ID	(L/s)	(m)	(m)	(kPa)
J-1	0.00	160.20	213.80	524.58
J-2	0.00	160.91	213.80	517.63
J-3	0.00	167.70	213.80	451.18
J-4	0.00	160.13	213.80	525.25
J-5	0.00	159.83	213.80	528.17
J-6	0.00	161.47	213.80	512.11
J-7	0.00	156.97	213.79	556.13
J-8	0.91	156.46	213.46	557.89
J-9	0.00	163.80	213.79	489.29
J-10	0.00	170.54	213.79	423.30
J-11	0.00	170.00	213.79	428.58
J-12	0.00	170.00	213.79	428.58
J-13	3.23	170.00	213.79	428.53
J-14	0.00	174.33	213.79	386.21
J-15	0.00	178.00	213.79	350.29
J-16	0.00	178.00	213.79	350.29
J-17	1.76	178.00	213.79	350.27
J-18	0.00	176.00	213.79	369.86
MIN		156.46		350.27
MAX		178.00		557.89

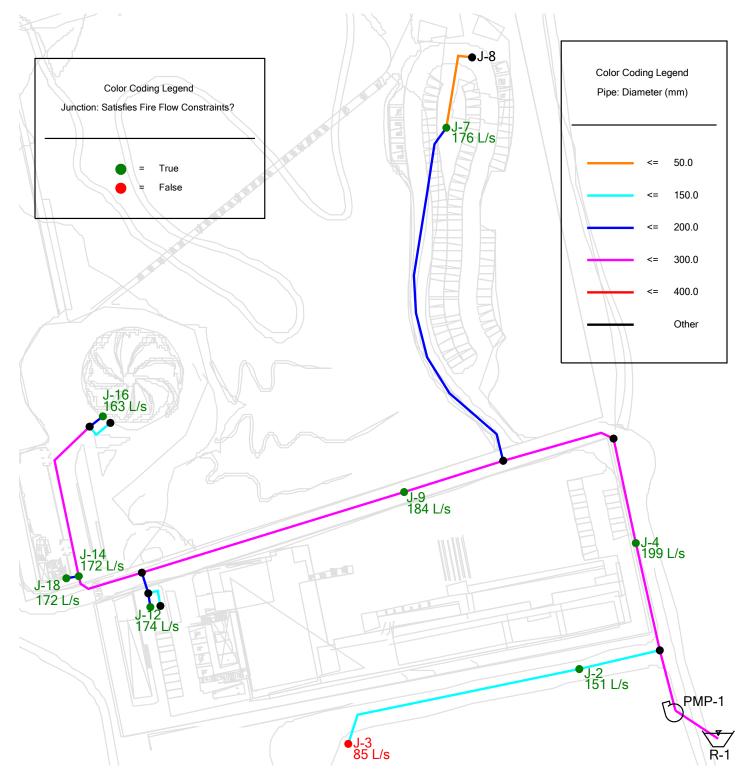
Pe	eak Hour						
			Pip	e Table			
ID	From Node	To Node	Length	Diameter	Roughness	Flow	Velocity
	FIOIII NOUE	TO NOUE	(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	18.21	300.0	120.0	5.90	0.08
P-2	PMP-1	J-1	22.18	300.0	120.0	5.90	0.08
P-3	J-1	J-2	29.39	150.0	100.0	0.00	0.00
P-4	J-2	J-3	91.46	150.0	100.0	0.00	0.00
P-5	J-1	J-4	39.13	300.0	120.0	5.90	0.08
P-6	J-4	J-5	38.02	300.0	120.0	5.90	0.08
P-7	J-5	J-6	41.08	300.0	120.0	5.90	0.08
P-8	J-6	J-7	131.21	200.0	110.0	0.91	0.03
P-9	J-7	J-8	30.84	50.0	100.0	0.91	0.46
P-10	J-6	J-9	36.98	300.0	120.0	4.99	0.07
P-11	J-9	J-10	97.67	300.0	120.0	4.99	0.07
P-12	J-10	J-11	7.72	200.0	110.0	3.23	0.10
P-13	J-11	J-12	4.93	200.0	110.0	0.00	0.00
P-14	J-11	J-13	8.97	150.0	100.0	3.23	0.18
P-15	J-10	J-14	25.95	300.0	120.0	1.76	0.02
P-16	J-14	J-15	59.46	300.0	120.0	1.76	0.02
P-17	J-15	J-16	5.91	200.0	110.0	0.00	0.00
P-18	J-15	J-17	10.28	150.0	100.0	1.76	0.10
P-19	J-14	J-18	4.48	200.0	110.0	0.00	0.00

_					Maximum	n Day Plus Fire	Flow					
	[Node Table						Pip	e Table			
ID	Demand	Elevation	Head	Pressure	ID	From Node	To Node	Length	Diameter	Roughness	Flow	
שו	(L/s)	(m)	(m)	(kPa)		From Node	TO NODE	(m)	(mm)	(C)	(L/s)	
J-1	0.00	160.20	206.03	448.55	P-1	R-1	PMP-1	18.21	300.0	120.0	119.94	ŀ
J-2	0.00	160.91	206.03	441.60	P-2	PMP-1	J-1	22.18	300.0	120.0	119.94	
J-3	0.00	167.70	206.03	375.15	P-3	J-1	J-2	29.39	150.0	100.0	0.00)
J-4	0.00	160.13	205.62	445.24	P-4	J-2	J-3	91.46	150.0	100.0	0.00)
J-5	0.00	159.83	205.23	444.29	P-5	J-1	J-4	39.13	300.0	120.0	119.94	
J-6	0.00	161.47	204.80	424.05	P-6	J-4	J-5	38.02	300.0	120.0	119.94	
J-7	117.00	156.97	193.63	358.83	P-7	J-5	J-6	41.08	300.0	120.0	119.94	
J-8	0.51	156.46	193.52	362.72	P-8	J-6	J-7	131.21	200.0	110.0	117.51	
J-9	0.00	163.80	204.80	401.24	P-9	J-7	J-8	30.84	50.0	100.0	0.51	
J-10	0.00	170.54	204.80	335.27	P-10	J-6	J-9	36.98	300.0	120.0	2.43	
J-11	0.00	170.00	204.80	340.55	P-11	J-9	J-10	97.67	300.0	120.0	2.43	
J-12	0.00	170.00	204.80	340.55	P-12	J-10	J-11	7.72	200.0	110.0	1.44	
J-13	1.44	170.00	204.80	340.54	P-13	J-11	J-12	4.93	200.0	110.0	0.00	
J-14	0.00	174.33	204.80	298.18	P-14	J-11	J-13	8.97	150.0	100.0	1.44	
J-15	0.00	178.00	204.80	262.26	P-15	J-10	J-14	25.95	300.0	120.0	0.99	
J-16	0.00	178.00	204.80	262.26	P-16	J-14	J-15	59.46	300.0	120.0	0.99	
J-17	0.99	178.00	204.80	262.25	P-17	J-15	J-16	5.91	200.0	110.0	0.00	
J-18	0.00	176.00	204.80	281.83	P-18	J-15	J-17	10.28	150.0	100.0	0.99	
					P-19	J-14	J-18	4.48	200.0	110.0	0.00	
MIN		156.46		262.25								
MAX		178.00		448.55								

Fire Flow Requirement of 117 L/s placed at Node J-7

					Maximum	n Day Plus Fire	Flow					
		Node Table						Pip	e Table			
	Demand	Elevation	Head	Pressure	ID	From Node	To Node	Length	Diameter	Roughness	Flow	V
ID	(L/s)	(m)	(m)	(kPa)		From Node	To Node	(m)	(mm)	(C)	(L/s)	
J-1	0.00	160.20	204.00	428.63	P-1	R-1	PMP-1	18.21	300.0	120.0	135.94	
J-2	0.00	160.91	204.00	421.68	P-2	PMP-1	J-1	22.18	300.0	120.0	135.94	
J-3	0.00	167.70	204.00	355.23	P-3	J-1	J-2	29.39	150.0	100.0	0.00	
J-4	0.00	160.13	203.48	424.28	P-4	J-2	J-3	91.46	150.0	100.0	0.00	
J-5	0.00	159.83	202.98	422.32	P-5	J-1	J-4	39.13	300.0	120.0	135.94	
J-6	0.00	161.47	202.44	400.97	P-6	J-4	J-5	38.02	300.0	120.0	135.94	
J-7	0.00	156.97	202.44	445.01	P-7	J-5	J-6	41.08	300.0	120.0	135.94	
J-8	0.51	156.46	202.33	448.90	P-8	J-6	J-7	131.21	200.0	110.0	0.51	
J-9	0.00	163.80	201.96	373.44	P-9	J-7	J-8	30.84	50.0	100.0	0.51	
J-10	0.00	170.54	200.68	294.98	P-10	J-6	J-9	36.98	300.0	120.0	135.43	
J-11	0.00	170.00	200.68	300.27	P-11	J-9	J-10	97.67	300.0	120.0	135.43	
J-12	0.00	170.00	200.68	300.27	P-12	J-10	J-11	7.72	200.0	110.0	1.44	
J-13	1.44	170.00	200.68	300.26	P-13	J-11	J-12	4.93	200.0	110.0	0.00	
J-14	0.00	174.33	200.35	254.64	P-14	J-11	J-13	8.97	150.0	100.0	1.44	
J-15	0.00	178.00	200.35	218.72	P-15	J-10	J-14	25.95	300.0	120.0	133.99	
J-16	0.00	178.00	200.35	218.72	P-16	J-14	J-15	59.46	300.0	120.0	0.99	
J-17	0.99	178.00	200.35	218.71	P-17	J-15	J-16	5.91	200.0	110.0	0.00	
J-18	133.00	176.00	199.87	233.60	P-18	J-15	J-17	10.28	150.0	100.0	0.99	
					P-19	J-14	J-18	4.48	200.0	110.0	133.00	
MIN		156.46		218.71								
MAX		178.00		448.90								

Fire Flow Requirement of 133 L/s placed at Node J-18



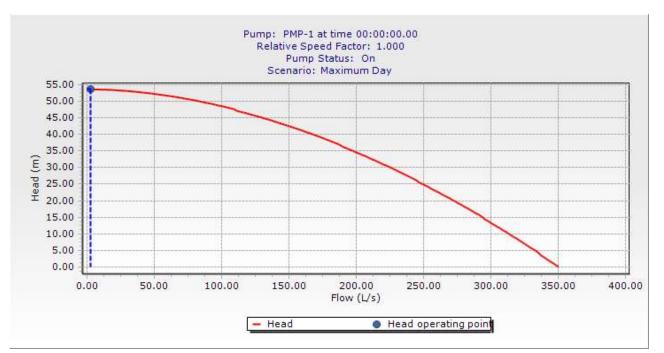
	Fire Flow Table											
ID	Fire Flow Demand	Total Demand	Total Available Flow	Available Fire Flow	Fire Flow Met?	Notes						
טו	(L/s)	(L/s)	(L/s)	(L/s)	FILE FIOW WEL:	NOLES						
J-2	117.00	117.00	151.45	151.45	TRUE							
J-3	117.00	117.00	85.14	85.14	FALSE	Existing Condition						
J-4	117.00	117.00	198.92	198.92	TRUE							
J-7	117.00	117.00	175.75	175.75	TRUE							
J-9	117.00	117.00	184.48	184.48	TRUE							
J-12	117.00	117.00	174.42	174.42	TRUE							
J-14	133.00	133.00	172.03	172.03	TRUE							
J-16	117.00	117.00	162.93	162.93	TRUE							
J-18	133.00	133.00	172.03	172.03	TRUE							

MIN	162.93
MAX	198.92
 امسما بامير ممامير الكمسما	2 and Materian County

(Min/max excludes nodes J-2 and J-3 on Waterloo Court)

Scenario: Maximum Day Available Fire Flow

	Average Day												
	Pump Table												
ID	Elevation <i>(m)</i>	Pump Definition	Pump Status	Hydraulic Grade (Suction) <i>(m)</i>	Hydraulic Grade (Discharge) <i>(m)</i>	Flow (Total) <i>(L/s)</i>	Pump Head (m)						
PMP-1	160.13	Hydrant Test (Waterloo Ct)	On	160.13	213.83	1.79	53.70						


Minimum Hour								
Pump Table								
ID	Elevation <i>(m)</i>	Pump Definition	Pump Status	Hydraulic Grade (Suction) <i>(m)</i>	Hydraulic Grade (Discharge) <i>(m)</i>	Flow (Total) (L/s)	Pump Head (m)	
PMP-1	160.13	Hydrant Test (Waterloo Ct)	On	160.13	213.83	1.24	53.70	

Maximum Day								
Pump Table								
ID	Elevation <i>(m)</i>	Pump Definition	Pump Status	Hydraulic Grade (Suction) <i>(m)</i>	Hydraulic Grade (Discharge) <i>(m)</i>	Flow (Total) <i>(L/s)</i>	Pump Head (m)	
PMP-1	160.13	Hydrant Test (Waterloo Ct)	On	160.13	213.82	2.94	53.69	

Peak Hour								
Pump Table								
ID	Elevation <i>(m)</i>	Pump Definition	Pump Status	Hydraulic Grade (Suction) <i>(m)</i>	Hydraulic Grade (Discharge) <i>(m)</i>	Flow (Total) <i>(L/s)</i>	Pump Head <i>(m)</i>	
PMP-1	160.13	Hydrant Test (Waterloo Ct)	On	160.13	213.80	5.90	53.67	

Maximum Day + Fire							
Pump Table							
ID	Elevation <i>(m)</i>	Pump Definition	Pump Status	Hydraulic Grade (Suction) <i>(m)</i>	Hydraulic Grade (Discharge) <i>(m)</i>	Flow (Total) <i>(L/s)</i>	Pump Head (m)
PMP-1	160.13	Hydrant Test (Waterloo Ct)	On	159.89	204.30	135.84	44.41
Fire Flow Deguirement of 1221 /c placed at Node 1 19							

Fire Flow Requirement of 133 L/s placed at Node J-18

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335